
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5295568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sixty years of coordination and support for Antarctic science $\hat{a} \in \hat{~}$ the role of SCAR. , 2022, , 9-40.		Ο
2	Antarctic Climate Evolution $\hat{a} \in $ second edition. , 2022, , 1-7.		2
3	The Eocene-Oligocene boundary climate transition: an Antarctic perspective. , 2022, , 297-361.		4
4	Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene – a perspective from the Ross Sea and George V to Wilkes Land Coasts. , 2022, , 389-521.		5
5	Cyclochronology of the Global Stratotype Section and Point for the Eocene/Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 594, 110958.	1.0	0
6	Thank You to Our 2021 Peer Reviewers. Reviews of Geophysics, 2022, 60, .	9.0	0
7	The Volsci Volcanic Field (central Italy): eruptive history, magma system and implications on continental subduction processes. International Journal of Earth Sciences, 2021, 110, 689-718.	0.9	13
8	Environmental evolution, faunal and human occupation since 2ÂMa in the Anagni basin, central Italy. Scientific Reports, 2021, 11, 7056.	1.6	9
9	Thank You to Our Peer Reviewers for 2020. Reviews of Geophysics, 2021, 59, e2021RG000741.	9.0	0
10	Earth's Magnetic Field Strength and the Cretaceous Normal Superchron: New Data From Costa Rica. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009605.	1.0	8
11	The strength of the Earth's magnetic field from Pre-Pottery to Pottery Neolithic, Jordan. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
12	Orbital tuning for the middle Eocene to early Oligocene Monte Cagnero Section (Central Italy): Paleoenvironmental and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577, 110563.	1.0	7
13	Integrated calcareous nannofossil and magnetostratigraphic record of ODP Site 709: Middle Eocene to late Oligocene paleoclimate and paleoceanography of the Equatorial Indian Ocean. Marine Micropaleontology, 2021, 169, 102051.	0.5	5
14	Geoscientists, Who Have Documented the Rapid and Accelerating Climate Crisis for Decades, Are Now Pleading for Immediate Collective Action. Geophysical Research Letters, 2021, 48, e2021GL096644.	1.5	3
15	Anomalous Last Interglacial Tyrrhenian sea levels and Neanderthal settling at Guattari and Moscerini caves (central Italy). Scientific Reports, 2020, 10, 11929.	1.6	16
16	An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 2020, 369, 1383-1387.	6.0	791
17	Magnetostratigraphic Chronology of a Cenozoic Sequence From DSDP Site 274, Ross Sea, Antarctica. Frontiers in Earth Science, 2020, 8, .	0.8	2
18	The Bucobello 322 ka-fossil-bearing volcaniclastic-flow deposit in the eastern Vulsini Volcanic District (central Italy): Mechanism of emplacement and insights on human activity during MIS 9. Quaternary International, 2020, 554, 75-89.	0.7	2

#	Article	IF	CITATIONS
19	A 4500 year record of palaeomagnetic secular variation and relative palaeointensity from the Tyrrhenian Sea. Geological Society Special Publication, 2020, 497, 159-178.	0.8	2
20	Monti Sabatini and Colli Albani: the dormant twin volcanoes at the gates of Rome. Scientific Reports, 2020, 10, 8666.	1.6	20
21	Thank You to Our Peer Reviewers for 2019. Reviews of Geophysics, 2020, 58, no.	9.0	0
22	The Role of Earth and Space Scientists During Pandemics. Eos, 2020, 101, .	0.1	2
23	Volcano-tectonic deformation in the Monti Sabatini Volcanic District at the gates of Rome (central) Tj ETQq1 1 Reports, 2019, 9, 11496.	0.784314 1.6	rgBT /Overlo 9
24	Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water (Switzerland), 2019, 11, 1480.	1.2	30
25	Extending the tephra and palaeoenvironmental record of the Central Mediterranean back to 430 ka: A new core from Fucino Basin, central Italy. Quaternary Science Reviews, 2019, 225, 106003.	1.4	32
26	New Developments in the PuffinPlot Paleomagnetic Data Analysis Program. Geochemistry, Geophysics, Geosystems, 2019, 20, 5578-5587.	1.0	10
27	Introduction to the Special Collection: Magnetism in the Geosciences—Advances and Perspectives. Journal of Geophysical Research: Solid Earth, 2019, 124, 12353-12353.	1.4	0
28	Combined glacio-eustatic forcing and volcano-tectonic uplift: Geomorphological and geochronological constraints on the Tiber River terraces in the eastern Vulsini Volcanic District (central Italy). Global and Planetary Change, 2019, 182, 103009.	1.6	12
29	Reconstruction of the MIS 5.5, 5.3 and 5.1 coastal terraces in Latium (central Italy): A re-evaluation of the sea-level history in the Mediterranean Sea during the last interglacial. Quaternary International, 2019, 525, 54-77.	0.7	24
30	Miocene Glacial Dynamics Recorded by Variations in Magnetic Properties in the ANDRILLâ€⊋A Drill Core. Journal of Geophysical Research: Solid Earth, 2019, 124, 2297-2312.	1.4	9
31	Thank You to Our 2018 Peer Reviewers. Reviews of Geophysics, 2019, 57, 4-4.	9.0	0
32	Lakes as paleoseismic records in a seismically-active, low-relief area (Rieti Basin, central Italy). Quaternary Science Reviews, 2019, 211, 186-207.	1.4	12
33	MIS 9 to MIS 5 terraces along the Tyrrhenian Sea coast of Latium (central Italy): Assessing interplay between sea-level oscillations and tectonic activity. Geomorphology, 2019, 346, 106843.	1.1	14
34	Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geoscience, 2019, 12, 132-137.	5.4	74
35	Historical ecology reveals landscape transformation coincident with cultural development in central Italy since the Roman Period. Scientific Reports, 2018, 8, 2138.	1.6	31
36	A review of the geologic sections and the faunal assemblages of Aurelian Mammal Age of Latium (Italy) in the light of a new chronostratigraphic framework. Quaternary Science Reviews, 2018, 181, 173-199.	1.4	34

#	Article	IF	CITATIONS
37	Highâ€resolution integrated calcareous plankton biostratigraphy and magnetostratigraphy at the Oligocene–Miocene transition in Southwestern Atlantic Ocean. Geological Journal, 2018, 53, 1079-1101.	0.6	5
38	Late Holocene forest dynamics in the Gulf of Gaeta (central Mediterranean) in relation to NAO variability and human impact. Quaternary Science Reviews, 2018, 179, 137-152.	1.4	50
39	Appreciation of Peer Reviewers for 2017. Reviews of Geophysics, 2018, 56, 566-566.	9.0	ο
40	The archaeological ensemble from Campoverde (Agro Pontino, central Italy): new constraints on the Last Interglacial sea level markers. Scientific Reports, 2018, 8, 17837.	1.6	8
41	A sedimentological record of early Miocene ice advance and retreat, AND-2A drill hole, McMurdo Sound, Antarctica. , 2018, 14, 1780-1803.		2
42	Signatures of Reductive Magnetic Mineral Diagenesis From Unmixing of Firstâ€Order Reversal Curves. Journal of Geophysical Research: Solid Earth, 2018, 123, 4500-4522.	1.4	61
43	Coeval Uplift and Subsidence Reveal Magma Recharging Near Rome (Italy). Geochemistry, Geophysics, Geosystems, 2018, 19, 1484-1498.	1.0	16
44	A review of the Villafranchian fossiliferous sites of Latium in the framework of the geodynamic setting and paleogeographic evolution of the Tyrrhenian Sea margin of central Italy. Quaternary Science Reviews, 2018, 191, 299-317.	1.4	5
45	Rome in its setting. Post-glacial aggradation history of the Tiber River alluvial deposits and tectonic origin of the Tiber Island. PLoS ONE, 2018, 13, e0194838.	1.1	18
46	Are We Prepared for the Next Mega Eruption?. Eos, 2018, , .	0.1	0
47	First integrated tephrochronological record for the last â^¼190Âkyr from the Fucino Quaternary lacustrine succession, central Italy. Quaternary Science Reviews, 2017, 158, 211-234.	1.4	61
48	A review of the stratigraphy of Rome (Italy) according to geochronologically and paleomagnetically constrained aggradational successions, glacio-eustatic forcing and volcano-tectonic processes. Quaternary International, 2017, 438, 40-67.	0.7	27
49	40Ar/39Ar dating of Glacial Termination VI: constraints on the duration of Marine Isotopic Stage 13. Scientific Reports, 2017, 7, 8908.	1.6	14
50	Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service to <i>Reviews of Geophysics</i> . Reviews of Geophysics, 2017, 55, 860-863.	9.0	1
51	Quaternary fluvial terraces of the Tiber Valley: geochronologic and geometric constraints on the back-arc magmatism-related uplift in central Italy. Scientific Reports, 2017, 7, 2517.	1.6	8
52	Antarctic Climate History and Global Climate Changes. , 2017, , .		0
53	Introducing the New Editor in Chief for Reviews of Geophysics . Eos, 2017, 98, .	0.1	0
54	Editorial: Magnetic Records of Extreme Geological Events. Frontiers in Earth Science, 2016, 4, .	0.8	0

#	Article	IF	CITATIONS
55	Tiber delta CO ₂ â€CH ₄ degassing: A possible hybrid, tectonically active Sedimentâ€Hosted Geothermal System near Rome. Journal of Geophysical Research: Solid Earth, 2016, 121, 48-69.	1.4	32
56	Selective zircon accumulation in a new benthic foraminifer, <i>Psammophaga zirconia</i> , sp. nov Geobiology, 2016, 14, 404-416.	1.1	13
57	Marine response to climate changes during the last five millennia in the central Mediterranean Sea. Global and Planetary Change, 2016, 142, 53-72.	1.6	71
58	Paleo-surfaces of glacio-eustatically forced aggradational successions in the coastal area of Rome: Assessing interplay between tectonics and sea-level during the last ten interglacials. Quaternary Science Reviews, 2016, 148, 85-100.	1.4	32
59	Assessing the volcanic hazard for Rome: ⁴⁰ Ar/ ³⁹ Ar and Inâ€SAR constraints on the most recent eruptive activity and presentâ€day uplift at Colli Albani Volcanic District. Geophysical Research Letters, 2016, 43, 6898-6906.	1.5	31
60	Appreciation of peer reviewers for 2015. Reviews of Geophysics, 2016, 54, 277-277.	9.0	0
61	Independent 40 Ar/ 39 Ar and 14 C age constraints on the last five glacial terminations from the aggradational successions of the Tiber River, Rome (Italy). Earth and Planetary Science Letters, 2016, 449, 105-117.	1.8	43
62	Tracing acidification induced by Deccan Phase 2 volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 181-197.	1.0	11
63	Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science, 2016, 352, 76-80.	6.0	116
64	Antarctic ice sheet sensitivity to atmospheric CO ₂ variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3453-3458.	3.3	133
65	Multistratigraphic records of the Lower Cretaceous (Valanginian–Cenomanian) Puez key area in N. Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 447, 65-87.	1.0	5
66	Environmental magnetic implications of magnetofossil occurrence during the Middle Eocene Climatic Optimum (MECO) in pelagic sediments from the equatorial Indian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 212-222.	1.0	26
67	ENVIRONMENTAL CONTROLS ON SOCIETAL CHANGE OR SOCIETAL CONTROLS ON ENVIRONMENTAL CHANGE? USING HISTORICAL ARCHIVES AND SEDIMENTARY DATA TO INTERPRET 2700 YEARS OF ENVIRONMENTAL HISTORY IN CENTRAL ITALY. , 2016, , .		0
68	New Insights from 60 Years of Crevasse Research. Eos, 2016, 97, .	0.1	0
69	Polarity Reversals in the Earth's Magnetic Field. Eos, 2016, 97, .	0.1	0
70	Frontiers in Cryoseismology. Eos, 2016, 97, .	0.1	0
71	New magnetobiostratigraphic chronology and paleoceanographic changes across the Oligoceneâ€Miocene boundary at DSDP Site 516 (Rio Grande Rise, SW Atlantic). Paleoceanography, 2015, 30, 659-681.	3.0	15
72	Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nature Communications, 2015, 6, 8765.	5.8	52

#	Article	IF	CITATIONS
73	2700 years of Mediterranean environmental change in central Italy: aÂsynthesis of sedimentary and cultural records to interpret past impacts of climate on society. Quaternary Science Reviews, 2015, 116, 72-94.	1.4	69
74	A potential global boundary stratotype section and point (GSSP) for the Tarentian Stage, Upper Pleistocene, from the Taranto area (Italy): Results and future perspectives. Quaternary International, 2015, 383, 145-157.	0.7	29
75	Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous–Paleogene boundary revisited. Earth and Planetary Science Letters, 2015, 430, 209-223.	1.8	23
76	Antarctic Ice Sheet response to a long warm interval across Marine Isotope Stage 31: A cross-latitudinal study of iceberg-rafted debris. Earth and Planetary Science Letters, 2015, 409, 109-119.	1.8	27
77	Paleomagnetic dating of tectonically influenced Plio-Quaternary fan-system deposits from the Apennines (Italy). Annals of Geophysics, 2015, 58, .	0.5	1
78	Middle Eocene to Late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity. Paleoceanography, 2014, 29, 223-237.	3.0	64
79	Sea-level variability over five glacial cycles. Nature Communications, 2014, 5, 5076.	5.8	325
80	Enhanced primary productivity and magnetotactic bacterial production in response to middle Eocene warming in the Neo-Tethys Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 32-45.	1.0	37
81	The subsurface geology of Rome: Sedimentary processes, sea-level changes and astronomical forcing. Earth-Science Reviews, 2014, 136, 1-20.	4.0	40
82	ANNALS OF GEOPHYSICS: AD MAJORA. Annals of Geophysics, 2014, 57, .	0.5	0
83	Iron oxide tracers of ice sheet extent and sediment provenance in the ANDRILL AND-1B drill core, Ross Sea, Antarctica. Global and Planetary Change, 2013, 110, 420-433.	1.6	13
84	Introduction to 'Magnetic iron minerals in sediments and their relation to geologic processes, climate, and the geomagnetic field'. Global and Planetary Change, 2013, 110, 259-263.	1.6	6
85	Magnetic properties of pelagic marine carbonates. Earth-Science Reviews, 2013, 127, 111-139.	4.0	84
86	Paleomagnetism and biostratigraphy of sediments from Southern Ocean ODP Site 744 (southern) Tj ETQq0 0 0 r Planetary Change, 2013, 110, 434-454.	rgBT /Over 1.6	lock 10 Tf 50 26
87	Orbitally paced shifts in the particle size of Antarctic continental shelf sediments in response to ice dynamics during the Miocene climatic optimum. , 2013, 9, 54-62.		11
88	Integrated magnetobiostratigraphy of the middle Eocene–lower Oligocene interval from the Monte Cagnero section, central Italy. Geological Society Special Publication, 2013, 373, 79-95.	0.8	7
89	Lowâ€ŧemperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification of magnetosome chains. Journal of Geophysical Research: Solid Earth, 2013, 118, 6049-6065.	1.4	50
90	Environmental magnetic record of paleoclimate, unroofing of the Transantarctic Mountains, and volcanism in late Eocene to early Miocene glaciâ€marine sediments from the Victoria Land Basin, Ross Sea, Antarctica. Journal of Geophysical Research: Solid Earth, 2013, 118, 1845-1861.	1.4	18

#	Article	IF	CITATIONS
91	Sudden deep gas eruption nearby Rome's airport of Fiumicino. Geophysical Research Letters, 2013, 40, 5632-5636.	1.5	27
92	Orbitally forced paleoenvironmental and paleoclimate changes in the late postevaporitic Messinian of the central Mediterranean Basin. Bulletin of the Geological Society of America, 2012, 124, 499-516.	1.6	35
93	Cyclochronology of the Eocene–Oligocene transition from the Cape Roberts Project-3 core, Victoria Land basin, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 335-336, 84-94.	1.0	12
94	Cenozoic evolution of Antarctic climates, oceans and ice sheets: An introduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 335-336, 1-3.	1.0	2
95	Prismatic magnetite magnetosomes from cultivated <i><scp>M</scp>agnetovibrio blakemorei</i> strain <scp>MV</scp> â€1: a magnetic fingerprint in marine sediments?. Environmental Microbiology Reports, 2012, 4, 664-668.	1.0	30
96	Searching for single domain magnetite in the "pseudoâ€singleâ€domain―sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations. Journal of Geophysical Research, 2012, 117, .	3.3	143
97	Neogene tectonic and climatic evolution of the Western Ross Sea, Antarctica — Chronology of events from the AND-1B drill hole. Global and Planetary Change, 2012, 96-97, 189-203.	1.6	27
98	Late Quaternary sediments from deep-sea sediment drifts on the Antarctic Peninsula Pacific margin: Climatic control on provenance of minerals. Journal of Geophysical Research, 2011, 116, .	3.3	13
99	Magnetic properties of sedimentary greigite (Fe ₃ S ₄): An update. Reviews of Geophysics, 2011, 49, .	9.0	318
100	Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron. Earth and Planetary Science Letters, 2011, 310, 441-452.	1.8	150
101	Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: A long-term, ice-proximal record of Early to Mid-Miocene climate, sea-level and glacial dynamism. Palaeogeography, Palaeoclimatology, Palaeoeclimatology, Palaeoecology, 2011, 305, 337-351.	1.0	70
102	Short- and long-term effects in the school system of a research immersion experience for science educators: An example from ANDRILL (Antarctic Geological Drilling). , 2011, 7, 1331-1339.		4
103	Complex polarity pattern at the former Plio–Pleistocene global stratotype section at Vrica (Italy): Remagnetization by magnetic iron sulphides. Earth and Planetary Science Letters, 2010, 292, 98-111.	1.8	55
104	Astronomical calibration of the middle Eocene Contessa Highway section (Gubbio, Italy). Earth and Planetary Science Letters, 2010, 298, 77-88.	1.8	49
105	Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene. Geology, 2009, 37, 955-958.	2.0	135
106	Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 2009, 458, 322-328.	13.7	564
107	Introduction to Cenozoic Antarctic glacial history. Global and Planetary Change, 2009, 69, v-vii.	1.6	4
108	Coupled greenhouse warming and deepâ€sea acidification in the middle Eocene. Paleoceanography, 2009, 24, .	3.0	251

FABIO FLORINDO

#	Article	IF	CITATIONS
109	Antarctic Drilling Recovers Stratigraphic Records From the Continental Margin. Eos, 2009, 90, 90-91.	0.1	23

"Earliest Zanclean age for the Colombacci and uppermost Di Tetto formations of the «Âlatest Messinian» northern Apennines: New palaeoenvironmental data from the Maccarone section (Marche) Tj ETQq0@D rgBT /@verlock 1

111	Chapter 10 Middle Miocene to Pliocene History of Antarctica and the Southern Ocean. Developments in Earth and Environmental Sciences, 2008, 8, 401-463.	0.1	19
112	History of glacial terminations from the Tiber River, Rome: Insights into glacial forcing mechanisms. Paleoceanography, 2008, 23, .	3.0	41
113	A Pleistocene warming event at 1ÂMa in Prydz Bay, East Antarctica: Evidence from ODP Site 1165. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260, 230-244.	1.0	35
114	Sedimentation and aspects of glacial dynamics from physical properties, mineralogy and magnetic properties at ODP Sites 1166 and 1167, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260, 184-201.	1.0	21
115	Introduction to â€~Antarctic cryosphere and Southern Ocean climate evolution (Cenozoic–Holocene)'. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260, 1-7.	1.0	3
116	Geomagnetic field behavior at high latitudes from a paleomagnetic record from Eltanin core 27–21 in the Ross Sea sector, Antarctica. Earth and Planetary Science Letters, 2008, 267, 435-443.	1.8	14
117	Chapter 1 Antarctic Climate Evolution. Developments in Earth and Environmental Sciences, 2008, 8, 1-11.	0.1	8
118	Chapter 2 The International Polar Years: A History of Developments in Antarctic Climate Evolution. Developments in Earth and Environmental Sciences, 2008, 8, 13-31.	0.1	2
119	Chapter 13 Concluding Remarks: Recent Changes in Antarctica and Future Research. Developments in Earth and Environmental Sciences, 2008, 8, 571-576.	0.1	0
120	Onset and role of the Antarctic Circumpolar Current. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 2388-2398.	0.6	121
121	Radioisotopic age constraints for Glacial Terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy. Earth and Planetary Science Letters, 2007, 256, 61-80.	1.8	50
122	Magnetic proxy for the deep (Pacific) western boundary current variability across the mid-Pleistocene climate transition. Earth and Planetary Science Letters, 2007, 259, 107-118.	1.8	22
123	Formation of iron sulfide nodules during anaerobic oxidation of methane. Geochimica Et Cosmochimica Acta, 2007, 71, 5155-5167.	1.6	68
124	High-resolution evidence for dynamic transitional geomagnetic field behaviour from a Miocene reversal, McMurdo Sound, Ross Sea, Antarctica. Earth, Planets and Space, 2007, 59, 815-824.	0.9	3
125	The middle Eocene climatic optimum event in the Contessa Highway section, Umbrian Apennines, Italy. Bulletin of the Geological Society of America, 2007, 119, 413-427.	1.6	96
126	A record of Antarctic climate and ice sheet history recovered. Eos, 2007, 88, 557-558.	0.1	22

#	Article	IF	CITATIONS
127	Eoceneâ€Oligocene paleoceanographic changes in the stratotype section, Massignano, Italy: Clues from rock magnetism and stable isotopes. Journal of Geophysical Research, 2007, 112, .	3.3	34
128	Core-mantle boundary deformations andJ2variations resulting from the 2004 Sumatra earthquake. Geophysical Journal International, 2007, 170, 718-724.	1.0	6
129	Astronomic calibration of the late Eocene/early Oligocene Massignano section (central Italy). Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	47
130	Magnetic petrology of variably retrogressed eclogites and amphibolites: A case study from the Hercynian basement of northern Sardinia (Italy). Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	11
131	Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Bulletin of the Geological Society of America, 2005, 117, 46.	1.6	49
132	Magnetostratigraphic chronology of a late Eocene to early Miocene glacimarine succession from the Victoria Land Basin, Ross Sea, Antarctica. Global and Planetary Change, 2005, 45, 207-236.	1.6	54
133	Introduction to †long-term changes in Southern high-latitude ice sheets and climate, the Cenozoic history'. Global and Planetary Change, 2005, 45, 1-7.	1.6	4
134	Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy. Geophysical Research Letters, 2005, 32, .	1.5	32
135	Could the Mw = 9.3 Sumatra earthquake trigger a geomagnetic jerk?. Eos, 2005, 86, 123.	0.1	9
136	Reply to Comment by M. Dumberry [on "Could the Mw> = 9.3 Sumatra Earthquake trigger a geomagnetic jerk?â€]. Eos, 2005, 86, 343.	0.1	1
137	Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International, 2004, 160, 89-100.	1.0	77
138	Magnetostratigraphy and environmental magnetism of two Quaternary deep-sea gravity cores from the west Pacific Southern Ocean. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	1.0	3
139	Environmental magnetic record of paleoclimate change from the Eocene-Oligocene stratotype section, Massignano, Italy. Geophysical Research Letters, 2004, 31, .	1.5	20
140	Magnetite dissolution in siliceous sediments. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	56
141	Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP sites 1165 and 1166, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198, 69-100.	1.0	50
142	Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene–Oligocene of Kerguelen Plateau (Ocean Drilling Program sites 744 and 748). Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198, 145-168.	1.0	36
143	Introduction to â€~Antarctic Cenozoic palaeoenvironments: geologic record and models'. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198, 1-9.	1.0	18
144	Genesis and evolution of a curved mountain front: paleomagnetic and geological evidence from the Gran Sasso range (central Apennines, Italy). Tectonophysics, 2003, 362, 183-197.	0.9	29

#	Article	IF	CITATIONS
145	Integrated chronostratigraphic calibration of the Oligocene-Miocene boundary at 24.0 ű 0.1 Ma from the CRP-2A drill core, Ross Sea, Antarctica. Geology, 2003, 31, e11-e12.	2.0	0
146	Integrated chronostratigraphic calibration of the Oligocene-Miocene boundary at 24.0 ű 0.1 Ma from the CRP-2A drill core, Ross Sea, Antarctica. Geology, 2003, 31, e11-e11.	2.0	1
147	Integrated chronostratigraphic calibration of the Oligocene-Miocene boundary at 24.0 ± 0.1 Ma from the CRP-2A drill core, Ross Sea, Antarctica. Geology, 2002, 30, 1043.	2.0	34
148	A short, reverse polarity interval within the Jaramillo subchron: Evidence from the Jingbian section, northern Chinese Loess Plateau. Journal of Geophysical Research, 2002, 107, EPM 2-1.	3.3	35
149	New inferences on Antarctic Ice Sheets and Cenozoic paleoclimates. Eos, 2002, 83, 35.	0.1	4
150	Age of the Corsica–Sardinia rotation and Liguro–Provençal Basin spreading: new paleomagnetic and Ar/Ar evidence. Tectonophysics, 2002, 347, 231-251.	0.9	222
151	Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese Loess/Paleosol Sequences. Geophysical Research Letters, 2001, 28, 4259-4262.	1.5	41
152	Pulsed uplift estimated from terrace elevations in the coast of Rome: evidence for a new phase of volcanic activity?. Earth and Planetary Science Letters, 2001, 188, 135-148.	1.8	61
153	Comment on "New radiometric dating of volcanic ash layers in Periadriatic foredeep basin system, Italy― Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167, 201-203.	1.0	1
154	Rock magnetic properties of a loess-paleosol couple along an N-S transect in the Chinese Loess Plateau. Science in China Series D: Earth Sciences, 2001, 44, 1099-1109.	0.9	10
155	Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature, 2001, 413, 719-723.	13.7	222
156	Book reviews. Palaeomagnetism and Diagenesis in Sediments. Ed. by D. H. Tarling and P. Turner, The Geological Society, London, Special Publications no. 151, 214 pp., f67.00/\$111.00, ISBN 1-86239-028-2 Sedimentology, 2000, 47, 911-912.	1.6	0
157	Paleomagnetic constraints on the Plio–Pleistocene geodynamic evolution of the external central–northern Apennines (Italy). Earth and Planetary Science Letters, 2000, 180, 243-257.	1.8	11
158	Low-field susceptibility and palaeorainfall estimates. New data along a N-S transect of the Chinese Loess Plateau. Physics and Chemistry of the Earth, 1999, 24, 817-821.	0.6	15
159	Magnetic anisotropy of Plio–Pleistocene sediments from the Adriatic margin of the northern Apennines (Italy): implications for the time–space evolution of the stress field. Tectonophysics, 1999, 311, 139-153.	0.9	41
160	Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau. Journal of Geophysical Research, 1999, 104, 645-659.	3.3	115
161	Environmental magnetic record of Antarctic palaeoclimate from Eocene/Oligocene glaciomarine sediments, Victoria Land Basin. Geophysical Journal International, 1998, 134, 653-662.	1.0	35
162	BIO- AND MAGNETO-STRATIGRAPHY IN THE TIBER VALLEY REVISED. Quaternary International, 1998, 47-48, 65-72.	0.7	10

#	Article	IF	CITATIONS
163	Paleomagnetism and geochronology of early Middle Pleistocene depositional sequences near Rome: comparison with the deep-sea l´180 record. Earth and Planetary Science Letters, 1998, 159, 147-164.	1.8	42
164	Magnetobiostratigraphic chronology of the Eocene–Oligocene transition in the CIROS-1 core, Victoria Land margin, Antarctica: Implications for Antarctic glacial history. Bulletin of the Geological Society of America, 1998, 110, 35-47.	1.6	74
165	Paleomagnetic lab established in Antarctica. Eos, 1997, 78, 603.	0.1	1
166	Inverse to normal magnetic fabric transition in an Upper Miocene Marly Sequence from Tuscany, Italy. Geophysical Research Letters, 1996, 23, 909-912.	1.5	21
167	Record of a previously unidentified short geomagnetic event from an upper Miocene sedimentary sequence, and preferred path of the transitional VGPs. Geophysical Journal International, 1996, 126, F1-F5.	1.0	2
168	Revised magnetostratigraphy and rock magnetism of Pliocene sediments from Valle Ricca (Rome, Italy). Geological Society Special Publication, 1996, 105, 219-223.	0.8	3
169	Palaeomagnetic database: the effect of quality filtering for geodynamic studies. Geological Society Special Publication, 1996, 105, 225-237.	0.8	3
170	Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophysical Journal International, 1995, 123, 340-354.	1.0	67
171	Using the ASCII version of the global paleomagnetic database. Eos, 1994, 75, 236.	0.1	5
172	Prydz Channel Fan and the History of Extreme Ice Advances in Prydz Bay. , 0, , .		15
173	A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy. Scientific Drilling, 0, 20, 13-19.	1.0	16
174	A high-resolution climate record spanning the past 17 000Âyears recovered from Lake Ohau, South Island, New Zealand. Scientific Drilling, 0, 24, 41-50.	1.0	3
175	Deep Drilling with the ANDRILL Program in Antarctica. Scientific Drilling, 0, 3, 43-45.	1.0	9
176	ANDRILL's Success During the 4th International Polar Year. Scientific Drilling, 0, 6, 29-31.	1.0	11
177	Tectonics and fluvial dynamism affecting the Tiber River in Prehistoric Rome. International Journal of Earth Sciences, 0, , 1.	0.9	2
178	Antarctic glacial history and Southern Ocean productivity during the Middle Eocene - Late Oligocene. Rendiconti Online Societa Geologica Italiana, 0, 31, 221-222.	0.3	0
179	Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C). Scientific Drilling, 0, 30, 101-112.	1.0	2