Marilena V Iorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5295175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the United States of America, 2006, 103, 2257-2261.	3.3	5,220
2	MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 2005, 65, 7065-7070.	0.4	3,719
3	miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13944-13949.	3.3	3,287
4	A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 353, 1793-1801.	13.9	2,255
5	MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Molecular Medicine, 2012, 4, 143-159.	3.3	1,481
6	MicroRNA Signatures in Human Ovarian Cancer. Cancer Research, 2007, 67, 8699-8707.	0.4	1,356
7	MicroRNAs in Cancer: Small Molecules With a Huge Impact. Journal of Clinical Oncology, 2009, 27, 5848-5856.	0.8	907
8	microRNA involvement in human cancer. Carcinogenesis, 2012, 33, 1126-1133.	1.3	502
9	microRNA-205 Regulates HER3 in Human Breast Cancer. Cancer Research, 2009, 69, 2195-2200.	0.4	334
10	Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 2010, 20, 589-599.	2.4	331
11	MicroRNA Cluster 221-222 and Estrogen Receptor α Interactions in Breast Cancer. Journal of the National Cancer Institute, 2010, 102, 706-721.	3.0	301
12	Interplay between microRNAs and the epigenetic machinery: An intricate network. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 694-701.	0.9	268
13	Causes and Consequences of MicroRNA Dysregulation. Cancer Journal (Sudbury, Mass), 2012, 18, 215-222.	1.0	260
14	Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death and Disease, 2016, 7, e2312-e2312.	2.7	232
15	Role of HER receptors family in development and differentiation. Journal of Cellular Physiology, 2004, 200, 343-350.	2.0	201
16	Oncosuppressive role of p53â€induced miRâ€205 in triple negative breast cancer. Molecular Oncology, 2012, 6, 458-472.	2.1	142
17	Estrogen Mediated-Activation of miR-191/425 Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on Estrogen Receptor Status. PLoS Genetics, 2013, 9, e1003311.	1.5	139
18	MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. European Journal of Cancer, 2008, 44, 2753-2759.	1.3	138

MARILENA V IORIO

#	Article	IF	CITATIONS
19	WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene, 2019, 38, 4047-4060.	2.6	137
20	Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers. Cancer Letters, 2017, 384, 94-100.	3.2	131
21	Breast cancer and microRNAs: therapeutic impact. Breast, 2011, 20, S63-S70.	0.9	87
22	Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Scientific Reports, 2018, 8, 12252.	1.6	75
23	miR-9 and miR-200 Regulate PDGFRβ-Mediated Endothelial Differentiation of Tumor Cells in Triple-Negative Breast Cancer. Cancer Research, 2016, 76, 5562-5572.	0.4	74
24	MicroRNAs and Triple Negative Breast Cancer. International Journal of Molecular Sciences, 2013, 14, 22202-22220.	1.8	70
25	miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget, 2016, 7, 786-797.	0.8	70
26	Plasma miRNA Levels for Predicting Therapeutic Response to Neoadjuvant Treatment in HER2-positive Breast Cancer: Results from the NeoALTTO Trial. Clinical Cancer Research, 2019, 25, 3887-3895.	3.2	42
27	Decoding Immune Heterogeneity of Triple Negative Breast Cancer and Its Association with Systemic Inflammation. Cancers, 2019, 11, 911.	1.7	40
28	UCbase & miRfunc: a database of ultraconserved sequences and microRNA function. Nucleic Acids Research, 2009, 37, D41-D48.	6.5	38
29	PDGFRÎ ² and FGFR2 mediate endothelial cell differentiation capability of triple negative breast carcinoma cells. Molecular Oncology, 2014, 8, 968-981.	2.1	37
30	Early Modulation of Circulating MicroRNAs Levels in HER2-Positive Breast Cancer Patients Treated with Trastuzumab-Based Neoadjuvant Therapy. International Journal of Molecular Sciences, 2020, 21, 1386.	1.8	33
31	miR-205 in Breast Cancer: State of the Art. International Journal of Molecular Sciences, 2021, 22, 27.	1.8	33
32	Expression of Concern: HER2 signaling enhances 5′UTRâ€mediated translation of câ€Myc mRNA. Journal of Cellular Physiology, 2004, 200, 82-88.	2.0	31
33	MicroRNA and Oxidative Stress Interplay in the Context of Breast Cancer Pathogenesis. International Journal of Molecular Sciences, 2019, 20, 5143.	1.8	30
34	Expression of long nonâ€coding <scp>RNA ENSG</scp> 00000226738 (Lnc <scp>KLHDC</scp> 7B) is enriched in the immunomodulatory tripleâ€negative breast cancer subtype and its alteration promotes cell migration, invasion, and resistance to cell death. Molecular Oncology, 2019, 13, 909-927.	2.1	29
35	Increased Sensitivity to Chemotherapy Induced by CpG-ODN Treatment Is Mediated by microRNA Modulation. PLoS ONE, 2013, 8, e58849.	1.1	21
36	Breast Cancer Drug Resistance: Overcoming the Challenge by Capitalizing on MicroRNA and Tumor Microenvironment Interplay. Cancers, 2021, 13, 3691.	1.7	20

MARILENA V IORIO

#	Article	IF	CITATIONS
37	Pleiotropic antitumor effects of the panâ€HDAC inhibitor ITF2357 against câ€Mycâ€overexpressing human Bâ€cell nonâ€Hodgkin lymphomas. International Journal of Cancer, 2014, 135, 2034-2045.	2.3	18
38	Relationship between p53 and p27 expression following HER2 signaling. Breast, 2007, 16, 597-605.	0.9	16
39	The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer. BMC Cancer, 2018, 18, 586.	1.1	16
40	Mexican Ganoderma Lucidum Extracts Decrease Lipogenesis Modulating Transcriptional Metabolic Networks and Gut Microbiota in C57BL/6 Mice Fed with a High-Cholesterol Diet. Nutrients, 2021, 13, 38.	1.7	15
41	MiR-205 as predictive biomarker and adjuvant therapeutic tool in combination with trastuzumab. Oncotarget, 2018, 9, 27920-27928.	0.8	14
42	miR-9-Mediated Inhibition of EFEMP1 Contributes to the Acquisition of Pro-Tumoral Properties in Normal Fibroblasts. Cells, 2020, 9, 2143.	1.8	13
43	The Therapeutic Potential of MicroRNAs in Cancer: Illusion or Opportunity?. Pharmaceuticals, 2020, 13, 438.	1.7	13
44	MiR-302b as a Combinatorial Therapeutic Approach to Improve Cisplatin Chemotherapy Efficacy in Human Triple-Negative Breast Cancer. Cancers, 2020, 12, 2261.	1.7	12
45	MicroRNA co-expression patterns unravel the relevance of extra cellular matrix and immunity in breast cancer. Breast, 2018, 39, 46-52.	0.9	11
46	MicroRNA Profiling in Ovarian Cancer. Methods in Molecular Biology, 2013, 1049, 187-197.	0.4	9
47	Commentary on microRNA Fingerprint in Human Epithelial Ovarian Cancer. Cancer Research, 2016, 76, 6143-6145.	0.4	6
48	What if the future of HER2â€positive breast cancer patients was written in miRNAs? An exploratory analysis from NeoALTTO study. Cancer Medicine, 2022, 11, 332-339.	1.3	6
49	Editorial: From "Junk DNA―to Clinically Relevant Tools for Cancer Diagnosis, Staging, and Tailored Therapies: The Incredible Case of Non-Coding RNAs. Frontiers in Oncology, 2019, 9, 389.	1.3	2
50	Current and Future Developments in Cancer Therapy Research: miRNAs as New Promising Targets or Tools. , 2012, , 517-546.		2
51	Abstract A47: A microRNA signature identifies subtypes of triple-negative breast cancer and reveals miR-342-3p as regulator of a lactate metabolic pathway through silencing monocarboxylate transporter 1. Cancer Research, 2016, 76, A47-A47.	0.4	2
52	Worldwide SARS-CoV-2 haplotype distribution in early pandemic. PLoS ONE, 2022, 17, e0263705.	1.1	2
53	Abstract 1068: The promise of miR-205 in HER2+ breast cancer: predicting response to Trastuzumab and overcoming resistance. , 2016, , .		1
54	Pathophysiology rolesr and translational opportunities of miRNAs in breast cancer. , 2022, , 195-201.		1

54 Pathophysiology rolesr and translational opportunities of miRNAs in breast cancer., 2022, , 195-201.

MARILENA V IORIO

#	Article	IF	CITATIONS
55	Editorial to the Special Issue "MicroRNA Dysregulation in Tumor Occurrence, Progression and Response to Therapyâ€: International Journal of Molecular Sciences, 2021, 22, 2156.	1.8	0
56	Abstract 2089: MiR-205 role in triple negative breast cancer. , 2010, , .		0
57	Abstract 4719: The HDAC inhibitor ITF2357 blocks c-Myc expression via microRNA modulation and cap-dependent translation inhibition in human Burkitt's lymphoma. , 2012, , .		Ο
58	Abstract 5207: miR-491 and miR-218: Two possible tools to reduce FOXP3 expression in breast carcinomas. , 2014, , .		0
59	Abstract 530: MicroRNA expression profiling in MMTV-neubreast cancer mouse model. , 2014, , .		0
60	Abstract 4381: MiR-205 and Trastuzumab: Potential as adjuvant therapeutic tool and predictive biomarker. , 2014, , .		0
61	Abstract A18: miR-9 and miR-200 regulate PDGFRÎ ² -mediated endothelial differentiation of neoplastic cells in triple-negative breast cancer. , 2016, , .		0
62	Abstract 5437: miR-302b as adjuvant therapeutic tool to improve chemotherapy efficacy in human triple-negative breast cancer. , 2017, , .		0