Anil K Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5294511/publications.pdf Version: 2024-02-01

ANUL K SINCH

#	Article	IF	CITATIONS
1	Negative differential stresses in niobium: Analysis of x-ray measured pressure–volume data. Journal of Applied Physics, 2020, 128, 075901.	2.5	1
2	<i>In situ</i> x-ray diffraction of fast compressed iron: Analysis of strains and stress under non-hydrostatic pressure. Physical Review B, 2015, 91, .	3.2	22
3	Strength and elasticity of niobium under high pressure. Journal of Applied Physics, 2011, 109, 113539.	2.5	29
4	Analysis of nonhydrostatic high-pressure diffraction data (cubic system): Assessment of various assumptions in the theory. Journal of Applied Physics, 2009, 106, .	2.5	34
5	Strength of polycrystalline coarse-grained platinum to 330GPa and of nanocrystalline platinum to 70GPa from high-pressure x-ray diffraction data. Journal of Applied Physics, 2008, 103, .	2.5	22
6	<i>Ab initio</i> calculations of elastic properties of compressed Pt. Physical Review B, 2007, 76, .	3.2	35
7	High-pressure equation of state for Nb with a helium-pressure medium: Powder x-ray diffraction experiments. Physical Review B, 2006, 73, .	3.2	67
8	Elastic properties of the bcc structure of bismuth at high pressure. Journal of Applied Physics, 2006, 99, 103504.	2.5	28
9	Equation of state of bismuth to 222 GPa and comparison of gold and platinum pressure scales to 145 GPa. Journal of Applied Physics, 2002, 92, 5892-5897.	2.5	108
10	Measurement and analysis of nonhydrostatic lattice strain component in niobium to 145 GPa under various fluid pressure-transmitting media. Journal of Applied Physics, 2001, 90, 3269-3275.	2.5	75
11	X-ray diffraction line broadening under elastic deformation of a polycrystalline sample: An elastic-anisotropy effect. Journal of Applied Physics, 2001, 90, 2296-2302.	2.5	22
12	Elasticity, shear strength, and equation of state of molybdenum and gold from x-ray diffraction under nonhydrostatic compression to 24 GPa. Journal of Applied Physics, 1999, 86, 6729-6736.	2.5	129
13	Estimation of Single-Crystal Elastic Moduli from Polycrystalline X-Ray Diffraction at High Pressure: Application to FeO and Iron. Physical Review Letters, 1998, 80, 2157-2160.	7.8	222
14	Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature, 1998, 396, 741-743.	27.8	253
15	Analysis of lattice strains measured under nonhydrostatic pressure. Journal of Applied Physics, 1998, 83, 7567-7575.	2.5	335
16	The lattice strains in a specimen (hexagonal system) compressed nonhydrostatically in an opposed anvil high pressure setup. Journal of Applied Physics, 1994, 75, 4956-4962.	2.5	84
17	The effect of stress anisotropy on the lattice strains measured with an x-ray diffraction opposed anvil setup. AIP Conference Proceedings, 1994, , .	0.4	1
18	The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. Journal of Applied Physics, 1993, 73, 4278-4286.	2.5	334

ANIL K SINGH

#	Article	IF	CITATIONS
19	Analysis of C ₆₀ fullerite compression under non-hydrostatic pressure. Philosophical Magazine Letters, 1993, 67, 379-384.	1.2	7
20	Temperature dependence under pressure of the kinetics of crystallization of bulk amorphous selenium. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 67, 705-720.	0.6	5
21	Measurement under pressure of thermoelectric power along the thickness of a thin specimen. Review of Scientific Instruments, 1991, 62, 1372-1373.	1.3	1
22	Thermoelectric power of tellurium under pressure up to 8 GPa. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 64, 559-561.	0.6	5
23	Generation of pressure pulses by impacting an opposedâ€anvil setup with a lowâ€velocity projectile. Review of Scientific Instruments, 1989, 60, 253-257.	1.3	3