Shou-Fei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5293855/publications.pdf

Version: 2024-02-01

104 papers 8,192 citations

52 h-index 49909 87 g-index

125 all docs

 $\begin{array}{c} 125 \\ \text{docs citations} \end{array}$

125 times ranked

4131 citing authors

#	Article	IF	CITATIONS
1	Copper-Catalyzed Ring-Opening/Borylation of Cyclopropenes. CCS Chemistry, 2022, 4, 1232-1237.	7.8	21
2	Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes. Synthesis, 2022, 54, 49-66.	2.3	22
3	Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation. Chemical Science, 2022, 13, 2721-2728.	7.4	35
4	Iron-Catalyzed Alkylzincation of Terminal Alkynes. ACS Catalysis, 2022, 12, 2581-2588.	11.2	15
5	Iron-Catalyzed Vinylzincation of Terminal Alkynes. Journal of the American Chemical Society, 2022, 144, 515-526.	13.7	24
6	Highly Regioâ€, Stereoâ€, and Enantioselective Copperâ€Catalyzed Bâ^'H Bond Insertion of αâ€Silylcarbenes: Efficient Access to Chiral Allylic <i>gem</i> ha€Silylboranes. Angewandte Chemie, 2022, 134, .	2.0	0
7	Highly Regioâ€, Stereoâ€, and Enantioselective Copperâ€Catalyzed Bâ^'H Bond Insertion of αâ€6ilylcarbenes: Efficient Access to Chiral Allylic <i>gem</i> â€6ilylboranes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
8	Iron-catalysed hydroalumination of internal alkynes. Chemical Science, 2022, 13, 7873-7879.	7.4	6
9	Catalytic Enantioselective Proton Transfer Reactions. Bulletin of the Chemical Society of Japan, 2021, 94, 767-789.	3.2	21
10	Investigation of the Acid-Mediated Photosensitized Reactions of Amphiphilic α-Keto Acids at the Air–Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 2306-2312.	2.8	2
11	Enantioselective Insertion of Alkynyl Carbenes into Si–H Bonds: An Efficient Access to Chiral Propargylsilanes and Allenylsilanes. Journal of the American Chemical Society, 2021, 143, 6401-6406.	13.7	69
12	Enantioselective Silicon-Directed Nazarov Cyclization. Journal of the American Chemical Society, 2021, 143, 6962-6968.	13.7	27
13	Nickel-Catalyzed Desymmetrizing Cyclization of 1,6-Dienes to Construct Quaternary Stereocenters. Organic Letters, 2021, 23, 3814-3817.	4.6	6
14	Chiral Dirhodium Tetraphosphate-Catalyzed Enantioselective Si–H Bond Insertion of α-Aryldiazoacetates. Journal of Organic Chemistry, 2021, 86, 9692-9698.	3.2	3
15	Total Synthesis of C-α-Mannosyl Tryptophan via Palladium-Catalyzed C–H Glycosylation. CCS Chemistry, 2021, 3, 1729-1736.	7.8	46
16	Catalytic Hydrogen Transfer Reactions. Chinese Journal of Chemistry, 2021, 39, 3211-3218.	4.9	29
17	Dirhodiumâ€Catalyzed Enantioselective Bâ^'H Bond Insertion of <i>gem</i> â€Diaryl Carbenes: Efficient Access to <i>gem</i> â€Diarylmethine Boranes. Angewandte Chemie, 2021, 133, 24416-24421.	2.0	7
18	Dirhodiumâ€Catalyzed Enantioselective Bâ^'H Bond Insertion of <i>gem</i> â€Diaryl Carbenes: Efficient Access to <i>gem</i> â€Diarylmethine Boranes. Angewandte Chemie - International Edition, 2021, 60, 24214-24219.	13.8	23

#	Article	IF	Citations
19	Uncommon carbene insertion reactions. Chemical Science, 2021, 12, 15790-15801.	7.4	43
20	Insertion of Alkylidene Carbenes into B–H Bonds. Journal of the American Chemical Society, 2020, 142, 20924-20929.	13.7	14
21	Carboxyl Group-Directed Iridium-Catalyzed Enantioselective Hydrogenation of Aliphatic Î ³ -Ketoacids. ACS Catalysis, 2020, 10, 10032-10039.	11.2	22
22	Iron-Catalyzed Regiodivergent Alkyne Hydrosilylation. Journal of the American Chemical Society, 2020, 142, 16894-16902.	13.7	77
23	Highly Enantioselective O–H Bond Insertion Reaction of α-Alkyl- and α-Alkenyl-α-diazoacetates with Water. Journal of the American Chemical Society, 2020, 142, 10557-10566.	13.7	77
24	Cu/PCy 3 â€Catalyzed Formal Carbene Insertion into Electronâ€Deficient Câ^'H Bonds. ChemCatChem, 2020, 12, 4267-4271.	3.7	5
25	Enantioselective Diarylcarbene Insertion into Si–H Bonds Induced by Electronic Properties of the Carbenes. Journal of the American Chemical Society, 2020, 142, 12394-12399.	13.7	62
26	Stereoselective synthesis of medium lactams enabled by metal-free hydroalkoxylation/stereospecific [1,3]-rearrangement. Nature Communications, 2019, 10, 3234.	12.8	105
27	Cobalt-Catalyzed Cyclization/Hydroboration of 1,6-Diynes with Pinacolborane. Organic Letters, 2019, 21, 7883-7887.	4.6	24
28	Chiral Spiro Phosphoric Acid-Catalyzed Friedel–Crafts Conjugate Addition/Enantioselective Protonation Reactions. ACS Catalysis, 2019, 9, 6522-6529.	11.2	58
29	Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors. ACS Catalysis, 2019, 9, 5353-5357.	11.2	55
30	Stereodiverse Iterative Synthesis of 1,3-Polyol Arrays through Asymmetric Catalytic Hydrogenation. Formal Total Synthesis of (â^')-Cyanolide A. Organic Letters, 2019, 21, 2369-2373.	4.6	9
31	Enantioselective Total Synthesis of (â^')â€Doliculide Using Catalytic Asymmetric Hydrogenations. Helvetica Chimica Acta, 2019, 102, e1900023.	1.6	4
32	Iron-Catalyzed Dihydrosilylation of Alkynes: Efficient Access to Geminal Bis(silanes). Journal of the American Chemical Society, 2019, 141, 4579-4583.	13.7	98
33	Chiral Spiro Phosphoramide-Catalyzed Sulfa-Michael Addition/Enantioselective Protonation of Exocyclic Enones. Organic Letters, 2019, 21, 9391-9395.	4.6	31
34	Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science, 2019, 366, 990-994.	12.6	176
35	lodineâ€Catalyzed Oxidative Rearrangement of Amines to αâ€Amino Acetals and αâ€Amino Aldehydes. Advanced Synthesis and Catalysis, 2019, 361, 1289-1294.	d 4.3	6
36	Recent advances in transition-metal-catalyzed asymmetric reactions of diazo compounds with electron-rich (hetero-) arenes. Tetrahedron Letters, 2018, 59, 2307-2316.	1.4	56

#	Article	IF	CITATIONS
37	Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation. Nature Communications, 2018, 9, 221.	12.8	145
38	Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Organic and Biomolecular Chemistry, 2018, 16, 3087-3094.	2.8	160
39	Iterative Synthesis of Polydeoxypropionates Based on Iridium-Catalyzed Asymmetric Hydrogenation of α-Substituted Acrylic Acids. Organic Letters, 2018, 20, 3305-3309.	4.6	8
40	Gold-Catalyzed Oxidative Coupling of Terminal Alkynes and Borane Adducts: Efficient Synthesis of α-Boryl Ketones. ACS Catalysis, 2018, 8, 7351-7355.	11.2	56
41	Goldâ€Catalyzed Formal Câ^'C Bond Insertion Reaction of 2â€Arylâ€2â€diazoesters with 1,3â€Diketones. Chemis - an Asian Journal, 2018, 13, 2606-2610.	stry 3.3	17
42	Rhodium-Catalyzed B–H Bond Insertion Reactions of Unstabilized Diazo Compounds Generated <i>in Situ</i> from Tosylhydrazones. Journal of the American Chemical Society, 2018, 140, 10663-10668.	13.7	71
43	Highly Enantioselective Nickel-Catalyzed Intramolecular Hydroalkenylation of N- and O-Tethered 1,6-Dienes To Form Six-Membered Heterocycles. Journal of the American Chemical Society, 2018, 140, 7458-7461.	13.7	37
44	Enantioselective O-H Bond Insertion of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Diazoketones with Alcohols Cooperatively Catalyzed by Achiral Dirhodium Complexes and Chiral Spiro Phosphoric Acids. Acta Chimica Sinica, 2018, 76, 883.	1.4	15
45	Catalytic B–H Bond Insertion Reactions Using Alkynes as Carbene Precursors. Journal of the American Chemical Society, 2017, 139, 3784-3789.	13.7	128
46	Highly Enantioselective Copper- and Iron-Catalyzed Intramolecular Cyclopropanation of Indoles. Journal of the American Chemical Society, 2017, 139, 7697-7700.	13.7	113
47	Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids. Accounts of Chemical Research, 2017, 50, 988-1001.	15.6	174
48	Mechanism Studies of Ir-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids. Journal of the American Chemical Society, 2017, 139, 541-547.	13.7	63
49	Enantioselective Nazarov cyclization of indole enones cooperatively catalyzed by Lewis acids and chiral $Br\tilde{A}_{,n}$ nsted acids. Chemical Science, 2017, 8, 7197-7202.	7.4	50
50	Copper-catalyzed Mannich-type oxidative \hat{l}^2 -functionalization of tertiary amines. Chemical Communications, 2017, 53, 8770-8773.	4.1	27
51	Phosphine-Catalyzed Asymmetric (3 + 2) Annulations of \hat{l} -Acetoxy Allenoates with \hat{l}^2 -Carbonyl Amides: Enantioselective Synthesis of Spirocyclic \hat{l}^2 -Keto \hat{l}^3 -Lactams. Organic Letters, 2017, 19, 3668-3671.	4.6	50
52	Neutral iridium catalysts with chiral phosphine-carboxy ligands for asymmetric hydrogenation of unsaturated carboxylic acids. Chemical Science, 2017, 8, 1977-1980.	7.4	30
53	Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons. Chinese Journal of Organic Chemistry, 2017, 37, 2497.	1.3	22
54	Enantioselective Synthesis of Spirobarbiturate-Cyclohexenes through Phosphine-Catalyzed Asymmetric [4 + 2] Annulation of Barbiturate-Derived Alkenes with Allenoates. Organic Letters, 2016, 18, 1302-1305.	4.6	91

#	Article	IF	CITATIONS
55	Deoxygenative Hydrogenation of Amides Catalyzed by a Well-Defined Iridium Pincer Complex. ACS Catalysis, 2016, 6, 3665-3669.	11.2	63
56	Enantioselective Copperâ€Catalyzed Intramolecular Nâ^'H Bond Insertion: Synthesis of Chiral 2â€Carboxytetrahydroquinolines. Advanced Synthesis and Catalysis, 2016, 358, 2366-2370.	4.3	35
57	Iron-catalyzed arylation of α-aryl-α-diazoesters. Organic and Biomolecular Chemistry, 2016, 14, 5516-5519.	2.8	39
58	Enantioselective synthesis of α-alkenyl α-amino acids via N–H insertion reactions. Chemical Science, 2016, 7, 1104-1108.	7.4	56
59	Catalytic Asymmetric Arylation of \hat{l}_{\pm} -Aryl- \hat{l}_{\pm} -diazoacetates with Aniline Derivatives. Journal of the American Chemical Society, 2015, 137, 8700-8703.	13.7	158
60	Highly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalysts. Organic Chemistry Frontiers, 2015, 2, 692-696.	4.5	35
61	Chiral phosphine-catalyzed tunable cycloaddition reactions of allenoates with benzofuranone-derived olefins for a highly regio-, diastereo- and enantioselective synthesis of spiro-benzofuranones. Chemical Science, 2015, 6, 7319-7325.	7.4	79
62	Enantioselective Copper-Catalyzed Bâ€"H Bond Insertion Reaction of α-Diazoketones. Acta Chimica Sinica, 2015, 73, 326.	1.4	30
63	Iron-Catalyzed Hydrogenation Reactions. Chinese Journal of Organic Chemistry, 2015, 35, 1383.	1.3	18
64	Iron-catalyzed transformations of diazo compounds. National Science Review, 2014, 1, 580-603.	9.5	146
65	Enantioselective NH Insertion Reaction of αâ€Aryl αâ€Diazoketones: An Efficient Route to Chiral αâ€Aminoketones. Angewandte Chemie - International Edition, 2014, 53, 3913-3916.	13.8	114
66	Synthesis of Chiral <i>α</i> êEbenzylâ€ <i>β</i> ² â€hydroxy Carboxylic Acids through Iridiumâ€Catalyzed Asymmetric Hydrogenation of <i>α</i> êOxymethylcinnamic Acids. Chinese Journal of Chemistry, 2014, 32, 783-787.	4.9	15
67	Enantioselective Palladium atalyzed Insertion of αâ€Arylâ€Î±â€diazoacetates into the OH Bonds of Phenols Angewandte Chemie - International Edition, 2014, 53, 2978-2981.	· 13.8	116
68	Highly enantioselective S–H bond insertion cooperatively catalyzed by dirhodium complexes and chiral spiro phosphoric acids. Chemical Science, 2014, 5, 1442.	7.4	140
69	Enantioselective Ironâ€Catalyzed Intramolecular Cyclopropanation Reactions. Angewandte Chemie - International Edition, 2014, 53, 13188-13191.	13.8	65
70	Carboxy-directed asymmetric hydrogenation of \hat{l} ±-alkyl- \hat{l} ±-aryl terminal olefins: highly enantioselective and chemoselective access to a chiral benzylmethyl center. Organic and Biomolecular Chemistry, 2014, 12, 2049.	2.8	28
71	Iridium-Catalyzed Enantioselective Hydrogenation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carboxylic Acids with Tetrasubstituted Olefins. Organic Letters, 2013, 15, 3722-3725.	4.6	45
72	Copper-Catalyzed B–H Bond Insertion Reaction: A Highly Efficient and Enantioselective C–B Bond-Forming Reaction with Amine–Borane and Phosphine–Borane Adducts. Journal of the American Chemical Society, 2013, 135, 14094-14097.	13.7	137

#	Article	IF	CITATIONS
73	Carboxyâ€Directed Asymmetric Hydrogenation of 1,1â€Diarylethenes and 1,1â€Dialkylethenes. Angewandte Chemie - International Edition, 2013, 52, 1556-1559.	13.8	102
74	Enantioselective Palladiumâ€Catalyzed Ringâ€Opening Reaction of Azabenzonorbornadienes with Methyl 2″odobenzoate: An Efficient Access to <i>cis</i> â€Dihydrobenzo[<i>c</i>]phenanthridinones. Advanced Synthesis and Catalysis, 2013, 355, 2833-2838.	4.3	19
75	Enantioselective Copperâ€Catalyzed Intramolecular Phenolic OH Bond Insertion: Synthesis of Chiral 2â€Carboxy Dihydrobenzofurans, Dihydrobenzopyrans, and Tetrahydrobenzooxepines. Angewandte Chemie - International Edition, 2013, 52, 2555-2558.	13.8	74
76	Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Letters, 2013, 54, 2665-2668.	1.4	36
77	Iridiumâ€Catalyzed Enantioselective Hydrogenation of Unsaturated Heterocyclic Acids. Angewandte Chemie - International Edition, 2013, 52, 6072-6075.	13.8	69
78	Catalytic Asymmetric Hydrogenation of αâ€Arylcyclohexanones and Total Synthesis of (â^)â€Î±â€Lycorane. Advanced Synthesis and Catalysis, 2013, 355, 1597-1604.	4.3	36
79	Enantioselective iridium-catalyzed hydrogenation of α-arylcinnamic acids andÂsynthesis of (S)-equol. Tetrahedron, 2012, 68, 5172-5178.	1.9	43
80	Well-Defined Binuclear Chiral Spiro Copper Catalysts for Enantioselective N–H Insertion. Journal of the American Chemical Society, 2012, 134, 436-442.	13.7	116
81	Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions. Accounts of Chemical Research, 2012, 45, 1365-1377.	15.6	647
82	Enantioselective Iridiumâ€Catalyzed Hydrogenation of β,γâ€Unsaturated Carboxylic Acids: An Efficient Approach to Chiral 4â€Alkylâ€4â€aryl Butanoic Acids. Angewandte Chemie - International Edition, 2012, 51, 2708-2711.	13.8	62
83	Enantioselective Hydrogenation of αâ€Substituted Acrylic Acids Catalyzed by Iridium Complexes with Chiral Spiro Aminophosphine Ligands. Angewandte Chemie - International Edition, 2012, 51, 8872-8875.	13.8	93
84	Highly enantioselective palladium-catalyzed umpolung allylation of aldehydes. Chemical Science, 2011, $2,1135.$	7.4	57
85	Ironâ€Catalyzed CH Fuctionalization of Indoles. Advanced Synthesis and Catalysis, 2011, 353, 2939-2944.	4.3	142
86	Asymmetric NH Insertion Reaction Cooperatively Catalyzed by Rhodium and Chiral Spiro Phosphoric Acids. Angewandte Chemie - International Edition, 2011, 50, 11483-11486.	13.8	283
87	Nickel-catalyzed enantioselective hydrovinylation of silyl-protected allylic alcohols: An efficient access to homoallylic alcohols with a chiral quaternary center. Science China Chemistry, 2010, 53, 1899-1906.	8.2	16
88	Catalytic Asymmetric Intramolecular Cascade Reaction for the Construction of Functionalized Benzobicyclo [4.3.0] Skeletons. Remote Control of Enantioselectivity. Advanced Synthesis and Catalysis, 2010, 352, 1914-1919.	4.3	89
89	Enantioselective iron-catalysed O–H bond insertions. Nature Chemistry, 2010, 2, 546-551.	13.6	225
90	Enantioselective Copper-Catalyzed Intramolecular Oâ^'H Insertion: An Efficient Approach to Chiral 2-Carboxy Cyclic Ethers. Journal of the American Chemical Society, 2010, 132, 16374-16376.	13.7	97

#	Article	IF	CITATIONS
91	Enantioselective Hydrogenation of \hat{l}_{\pm} -Aryloxy and \hat{l}_{\pm} -Alkoxy \hat{l}_{\pm} , \hat{l}_{\pm} -Unsaturated Carboxylic Acids Catalyzed by Chiral Spiro Iridium/Phosphino-Oxazoline Complexes. Journal of the American Chemical Society, 2010, 132, 1172-1179.	13.7	105
92	Copper-catalyzed enantioselective carbenoid insertion into S–H bonds. Chemical Communications, 2009, , 5362.	4.1	80
93	Catalytic Asymmetric Reaction with Water: Enantioselective Synthesis of αâ€Hydroxyesters by a Copper–Carbenoid OH Insertion Reaction. Angewandte Chemie - International Edition, 2008, 47, 932-934.	13.8	146
94	Copperâ€Catalyzed Highly Enantioselective Carbenoid Insertion into SiH Bonds. Angewandte Chemie - International Edition, 2008, 47, 8496-8498.	13.8	128
95	Nickelâ€Catalyzed Highly Selective Hydrovinylation of αâ€Ketals of Vinylarenes. Advanced Synthesis and Catalysis, 2008, 350, 1507-1510.	4.3	21
96	Highly Enantioselective Copper atalyzed Ring Opening of Oxabicyclic Alkenes with Grignard Reagents. Chemistry - an Asian Journal, 2008, 3, 2105-2111.	3.3	60
97	Iridium-Catalyzed Enantioselective Hydrogenation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carboxylic Acids. Journal of the American Chemical Society, 2008, 130, 8584-8585.	13.7	156
98	Asymmetric Reductive Coupling of Dienes and Aldehydes Catalyzed by Nickel Complexes of Spiro Phosphoramidites:Â Highly Enantioselective Synthesis of Chiral Bishomoallylic Alcohols. Journal of the American Chemical Society, 2007, 129, 2248-2249.	13.7	136
99	Highly Enantioselective Insertion of Carbenoids into Nâ^'H Bonds Catalyzed by Copper Complexes of Chiral Spiro Bisoxazolines. Journal of the American Chemical Society, 2007, 129, 5834-5835.	13.7	246
100	Highly Enantioselective Insertion of Carbenoids into Oâ^'H Bonds of Phenols:  An Efficient Approach to Chiral α-Aryloxycarboxylic Esters. Journal of the American Chemical Society, 2007, 129, 12616-12617.	13.7	203
101	Well-Defined Chiral Spiro Iridium/Phosphineâ^'Oxazoline Cationic Complexes for Highly Enantioselective Hydrogenation of Imines at Ambient Pressure. Journal of the American Chemical Society, 2006, 128, 12886-12891.	13.7	216
102	Preparation and application of bisoxazoline ligands with a chiral spirobiindane skeleton for asymmetric cyclopropanation and allylic oxidation. Tetrahedron: Asymmetry, 2006, 17, 634-641.	1.8	59
103	New chiral phosphorus ligands with spirobiindane backbone for asymmetric hydrogenations. Pure and Applied Chemistry, 2005, 77, 2121-2132.	1.9	18
104	Synthesis and Application of Chiral Spiro Phospholane Ligand in Pd-Catalyzed Asymmetric Allylation of Aldehydes with Allylic Alcohols. Organic Letters, 2005, 7, 2333-2335.	4.6	135