
Shou-Fei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5293855/publications.pdf Version: 2024-02-01

Shou-Fei 7hu

#	Article	IF	CITATIONS
1	Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions. Accounts of Chemical Research, 2012, 45, 1365-1377.	15.6	647
2	Asymmetric NH Insertion Reaction Cooperatively Catalyzed by Rhodium and Chiral Spiro Phosphoric Acids. Angewandte Chemie - International Edition, 2011, 50, 11483-11486.	13.8	283
3	Highly Enantioselective Insertion of Carbenoids into Nâ^'H Bonds Catalyzed by Copper Complexes of Chiral Spiro Bisoxazolines. Journal of the American Chemical Society, 2007, 129, 5834-5835.	13.7	246
4	Enantioselective iron-catalysed O–H bond insertions. Nature Chemistry, 2010, 2, 546-551.	13.6	225
5	Well-Defined Chiral Spiro Iridium/Phosphineâ^'Oxazoline Cationic Complexes for Highly Enantioselective Hydrogenation of Imines at Ambient Pressure. Journal of the American Chemical Society, 2006, 128, 12886-12891.	13.7	216
6	Highly Enantioselective Insertion of Carbenoids into Oâ^'H Bonds of Phenols:  An Efficient Approach to Chiral α-Aryloxycarboxylic Esters. Journal of the American Chemical Society, 2007, 129, 12616-12617.	13.7	203
7	Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science, 2019, 366, 990-994.	12.6	176
8	Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids. Accounts of Chemical Research, 2017, 50, 988-1001.	15.6	174
9	Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Organic and Biomolecular Chemistry, 2018, 16, 3087-3094.	2.8	160
10	Catalytic Asymmetric Arylation of α-Aryl-α-diazoacetates with Aniline Derivatives. Journal of the American Chemical Society, 2015, 137, 8700-8703.	13.7	158
11	Iridium-Catalyzed Enantioselective Hydrogenation of α,β-Unsaturated Carboxylic Acids. Journal of the American Chemical Society, 2008, 130, 8584-8585.	13.7	156
12	Catalytic Asymmetric Reaction with Water: Enantioselective Synthesis of αâ€Hydroxyesters by a Copper–Carbenoid OH Insertion Reaction. Angewandte Chemie - International Edition, 2008, 47, 932-934.	13.8	146
13	Iron-catalyzed transformations of diazo compounds. National Science Review, 2014, 1, 580-603.	9.5	146
14	Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation. Nature Communications, 2018, 9, 221.	12.8	145
15	Iron atalyzed CH Fuctionalization of Indoles. Advanced Synthesis and Catalysis, 2011, 353, 2939-2944.	4.3	142
16	Highly enantioselective S–H bond insertion cooperatively catalyzed by dirhodium complexes and chiral spiro phosphoric acids. Chemical Science, 2014, 5, 1442.	7.4	140
17	Copper-Catalyzed B–H Bond Insertion Reaction: A Highly Efficient and Enantioselective C–B Bond-Forming Reaction with Amine–Borane and Phosphine–Borane Adducts. Journal of the American Chemical Society, 2013, 135, 14094-14097.	13.7	137
18	Asymmetric Reductive Coupling of Dienes and Aldehydes Catalyzed by Nickel Complexes of Spiro Phosphoramidites:Â Highly Enantioselective Synthesis of Chiral Bishomoallylic Alcohols. Journal of the American Chemical Society, 2007, 129, 2248-2249.	13.7	136

#	Article	IF	CITATIONS
19	Synthesis and Application of Chiral Spiro Phospholane Ligand in Pd-Catalyzed Asymmetric Allylation of Aldehydes with Allylic Alcohols. Organic Letters, 2005, 7, 2333-2335.	4.6	135
20	Copperâ€Catalyzed Highly Enantioselective Carbenoid Insertion into SiH Bonds. Angewandte Chemie - International Edition, 2008, 47, 8496-8498.	13.8	128
21	Catalytic B–H Bond Insertion Reactions Using Alkynes as Carbene Precursors. Journal of the American Chemical Society, 2017, 139, 3784-3789.	13.7	128
22	Well-Defined Binuclear Chiral Spiro Copper Catalysts for Enantioselective N–H Insertion. Journal of the American Chemical Society, 2012, 134, 436-442.	13.7	116
23	Enantioselective Palladiumâ€Catalyzed Insertion of αâ€Arylâ€Î±â€diazoacetates into the OH Bonds of Phenols Angewandte Chemie - International Edition, 2014, 53, 2978-2981.	[•] 13.8	116
24	Enantioselective NH Insertion Reaction of αâ€Aryl αâ€Diazoketones: An Efficient Route to Chiral αâ€Aminoketones. Angewandte Chemie - International Edition, 2014, 53, 3913-3916.	13.8	114
25	Highly Enantioselective Copper- and Iron-Catalyzed Intramolecular Cyclopropanation of Indoles. Journal of the American Chemical Society, 2017, 139, 7697-7700.	13.7	113
26	Enantioselective Hydrogenation of α-Aryloxy and α-Alkoxy α,β-Unsaturated Carboxylic Acids Catalyzed by Chiral Spiro Iridium/Phosphino-Oxazoline Complexes. Journal of the American Chemical Society, 2010, 132, 1172-1179.	13.7	105
27	Stereoselective synthesis of medium lactams enabled by metal-free hydroalkoxylation/stereospecific [1,3]-rearrangement. Nature Communications, 2019, 10, 3234.	12.8	105
28	Carboxyâ€Directed Asymmetric Hydrogenation of 1,1â€Diarylethenes and 1,1â€Dialkylethenes. Angewandte Chemie - International Edition, 2013, 52, 1556-1559.	13.8	102
29	Iron-Catalyzed Dihydrosilylation of Alkynes: Efficient Access to Geminal Bis(silanes). Journal of the American Chemical Society, 2019, 141, 4579-4583.	13.7	98
30	Enantioselective Copper-Catalyzed Intramolecular Oâ^'H Insertion: An Efficient Approach to Chiral 2-Carboxy Cyclic Ethers. Journal of the American Chemical Society, 2010, 132, 16374-16376.	13.7	97
31	Enantioselective Hydrogenation of αâ€5ubstituted Acrylic Acids Catalyzed by Iridium Complexes with Chiral Spiro Aminophosphine Ligands. Angewandte Chemie - International Edition, 2012, 51, 8872-8875.	13.8	93
32	Enantioselective Synthesis of Spirobarbiturate-Cyclohexenes through Phosphine-Catalyzed Asymmetric [4 + 2] Annulation of Barbiturate-Derived Alkenes with Allenoates. Organic Letters, 2016, 18, 1302-1305.	4.6	91
33	Catalytic Asymmetric Intramolecular Cascade Reaction for the Construction of Functionalized Benzobicyclo[4.3.0] Skeletons. Remote Control of Enantioselectivity. Advanced Synthesis and Catalysis, 2010, 352, 1914-1919.	4.3	89
34	Copper-catalyzed enantioselective carbenoid insertion into S–H bonds. Chemical Communications, 2009, , 5362.	4.1	80
35	Chiral phosphine-catalyzed tunable cycloaddition reactions of allenoates with benzofuranone-derived olefins for a highly regio-, diastereo- and enantioselective synthesis of spiro-benzofuranones. Chemical Science, 2015, 6, 7319-7325.	7.4	79
36	Iron-Catalyzed Regiodivergent Alkyne Hydrosilylation. Journal of the American Chemical Society, 2020, 142, 16894-16902.	13.7	77

#	Article	IF	CITATIONS
37	Highly Enantioselective O–H Bond Insertion Reaction of α-Alkyl- and α-Alkenyl-α-diazoacetates with Water. Journal of the American Chemical Society, 2020, 142, 10557-10566.	13.7	77
38	Enantioselective Copperâ€Catalyzed Intramolecular Phenolic Oï£;H Bond Insertion: Synthesis of Chiral 2â€Carboxy Dihydrobenzofurans, Dihydrobenzopyrans, and Tetrahydrobenzooxepines. Angewandte Chemie - International Edition, 2013, 52, 2555-2558.	13.8	74
39	Rhodium-Catalyzed B–H Bond Insertion Reactions of Unstabilized Diazo Compounds Generated <i>in Situ</i> from Tosylhydrazones. Journal of the American Chemical Society, 2018, 140, 10663-10668.	13.7	71
40	Iridium atalyzed Enantioselective Hydrogenation of Unsaturated Heterocyclic Acids. Angewandte Chemie - International Edition, 2013, 52, 6072-6075.	13.8	69
41	Enantioselective Insertion of Alkynyl Carbenes into Si–H Bonds: An Efficient Access to Chiral Propargylsilanes and Allenylsilanes. Journal of the American Chemical Society, 2021, 143, 6401-6406.	13.7	69
42	Enantioselective Ironâ€Catalyzed Intramolecular Cyclopropanation Reactions. Angewandte Chemie - International Edition, 2014, 53, 13188-13191.	13.8	65
43	Deoxygenative Hydrogenation of Amides Catalyzed by a Well-Defined Iridium Pincer Complex. ACS Catalysis, 2016, 6, 3665-3669.	11.2	63
44	Mechanism Studies of Ir-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids. Journal of the American Chemical Society, 2017, 139, 541-547.	13.7	63
45	Enantioselective Iridiumâ€Catalyzed Hydrogenation of β,γâ€Unsaturated Carboxylic Acids: An Efficient Approach to Chiral 4â€Alkylâ€4â€aryl Butanoic Acids. Angewandte Chemie - International Edition, 2012, 51, 2708-2711.	13.8	62
46	Enantioselective Diarylcarbene Insertion into Si–H Bonds Induced by Electronic Properties of the Carbenes. Journal of the American Chemical Society, 2020, 142, 12394-12399.	13.7	62
47	Highly Enantioselective Copperâ€Catalyzed Ring Opening of Oxabicyclic Alkenes with Grignard Reagents. Chemistry - an Asian Journal, 2008, 3, 2105-2111.	3.3	60
48	Preparation and application of bisoxazoline ligands with a chiral spirobiindane skeleton for asymmetric cyclopropanation and allylic oxidation. Tetrahedron: Asymmetry, 2006, 17, 634-641.	1.8	59
49	Chiral Spiro Phosphoric Acid-Catalyzed Friedel–Crafts Conjugate Addition/Enantioselective Protonation Reactions. ACS Catalysis, 2019, 9, 6522-6529.	11.2	58
50	Highly enantioselective palladium-catalyzed umpolung allylation of aldehydes. Chemical Science, 2011, 2, 1135.	7.4	57
51	Enantioselective synthesis of α-alkenyl α-amino acids via N–H insertion reactions. Chemical Science, 2016, 7, 1104-1108.	7.4	56
52	Recent advances in transition-metal-catalyzed asymmetric reactions of diazo compounds with electron-rich (hetero-) arenes. Tetrahedron Letters, 2018, 59, 2307-2316.	1.4	56
53	Gold-Catalyzed Oxidative Coupling of Terminal Alkynes and Borane Adducts: Efficient Synthesis of α-Boryl Ketones. ACS Catalysis, 2018, 8, 7351-7355.	11.2	56
54	Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors. ACS Catalysis, 2019, 9, 5353-5357.	11.2	55

#	Article	IF	CITATIONS
55	Enantioselective Nazarov cyclization of indole enones cooperatively catalyzed by Lewis acids and chiral BrÃ,nsted acids. Chemical Science, 2017, 8, 7197-7202.	7.4	50
56	Phosphine-Catalyzed Asymmetric (3 + 2) Annulations of δ-Acetoxy Allenoates with β-Carbonyl Amides: Enantioselective Synthesis of Spirocyclic β-Keto γ-Lactams. Organic Letters, 2017, 19, 3668-3671.	4.6	50
57	Total Synthesis of C-α-Mannosyl Tryptophan via Palladium-Catalyzed C–H Glycosylation. CCS Chemistry, 2021, 3, 1729-1736.	7.8	46
58	Iridium-Catalyzed Enantioselective Hydrogenation of α,β-Unsaturated Carboxylic Acids with Tetrasubstituted Olefins. Organic Letters, 2013, 15, 3722-3725.	4.6	45
59	Enantioselective iridium-catalyzed hydrogenation of α-arylcinnamic acids andÂsynthesis of (S)-equol. Tetrahedron, 2012, 68, 5172-5178.	1.9	43
60	Uncommon carbene insertion reactions. Chemical Science, 2021, 12, 15790-15801.	7.4	43
61	Iron-catalyzed arylation of α-aryl-α-diazoesters. Organic and Biomolecular Chemistry, 2016, 14, 5516-5519.	2.8	39
62	Highly Enantioselective Nickel-Catalyzed Intramolecular Hydroalkenylation of N- and O-Tethered 1,6-Dienes To Form Six-Membered Heterocycles. Journal of the American Chemical Society, 2018, 140, 7458-7461.	13.7	37
63	Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Letters, 2013, 54, 2665-2668.	1.4	36
64	Catalytic Asymmetric Hydrogenation of αâ€Arylcyclohexanones and Total Synthesis of (â^)â€Î±â€Łycorane. Advanced Synthesis and Catalysis, 2013, 355, 1597-1604.	4.3	36
65	Highly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalysts. Organic Chemistry Frontiers, 2015, 2, 692-696.	4.5	35
66	Enantioselective Copperâ€Catalyzed Intramolecular Nâ^'H Bond Insertion: Synthesis of Chiral 2â€Carboxytetrahydroquinolines. Advanced Synthesis and Catalysis, 2016, 358, 2366-2370.	4.3	35
67	Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation. Chemical Science, 2022, 13, 2721-2728.	7.4	35
68	Chiral Spiro Phosphoramide-Catalyzed Sulfa-Michael Addition/Enantioselective Protonation of Exocyclic Enones. Organic Letters, 2019, 21, 9391-9395.	4.6	31
69	Neutral iridium catalysts with chiral phosphine-carboxy ligands for asymmetric hydrogenation of unsaturated carboxylic acids. Chemical Science, 2017, 8, 1977-1980.	7.4	30
70	Enantioselective Copper-Catalyzed B—H Bond Insertion Reaction of α-Diazoketones. Acta Chimica Sinica, 2015, 73, 326.	1.4	30
71	Catalytic Hydrogen Transfer Reactions. Chinese Journal of Chemistry, 2021, 39, 3211-3218.	4.9	29
72	Carboxy-directed asymmetric hydrogenation of α-alkyl-α-aryl terminal olefins: highly enantioselective and chemoselective access to a chiral benzylmethyl center. Organic and Biomolecular Chemistry, 2014, 12, 2049.	2.8	28

#	Article	IF	CITATIONS
73	Copper-catalyzed Mannich-type oxidative \hat{l}^2 -functionalization of tertiary amines. Chemical Communications, 2017, 53, 8770-8773.	4.1	27
74	Enantioselective Silicon-Directed Nazarov Cyclization. Journal of the American Chemical Society, 2021, 143, 6962-6968.	13.7	27
75	Cobalt-Catalyzed Cyclization/Hydroboration of 1,6-Diynes with Pinacolborane. Organic Letters, 2019, 21, 7883-7887.	4.6	24
76	Iron-Catalyzed Vinylzincation of Terminal Alkynes. Journal of the American Chemical Society, 2022, 144, 515-526.	13.7	24
77	Dirhodiumâ€Catalyzed Enantioselective Bâ^'H Bond Insertion of <i>gem</i> â€Diaryl Carbenes: Efficient Access to <i>gem</i> â€Diarylmethine Boranes. Angewandte Chemie - International Edition, 2021, 60, 24214-24219.	13.8	23
78	Carboxyl Group-Directed Iridium-Catalyzed Enantioselective Hydrogenation of Aliphatic Î ³ -Ketoacids. ACS Catalysis, 2020, 10, 10032-10039.	11.2	22
79	Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes. Synthesis, 2022, 54, 49-66.	2.3	22
80	Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons. Chinese Journal of Organic Chemistry, 2017, 37, 2497.	1.3	22
81	Nickelâ€Catalyzed Highly Selective Hydrovinylation of αâ€Ketals of Vinylarenes. Advanced Synthesis and Catalysis, 2008, 350, 1507-1510.	4.3	21
82	Catalytic Enantioselective Proton Transfer Reactions. Bulletin of the Chemical Society of Japan, 2021, 94, 767-789.	3.2	21
83	Copper-Catalyzed Ring-Opening/Borylation of Cyclopropenes. CCS Chemistry, 2022, 4, 1232-1237.	7.8	21
84	Enantioselective Palladiumâ€Catalyzed Ringâ€Opening Reaction of Azabenzonorbornadienes with Methyl 2â€lodobenzoate: An Efficient Access to <i>cis</i> â€Dihydrobenzo[<i>c</i>]phenanthridinones. Advanced Synthesis and Catalysis, 2013, 355, 2833-2838.	4.3	19
85	New chiral phosphorus ligands with spirobiindane backbone for asymmetric hydrogenations. Pure and Applied Chemistry, 2005, 77, 2121-2132.	1.9	18
86	Iron-Catalyzed Hydrogenation Reactions. Chinese Journal of Organic Chemistry, 2015, 35, 1383.	1.3	18
87	Goldâ€Catalyzed Formal Câ^'C Bond Insertion Reaction of 2â€Arylâ€2â€diazoesters with 1,3â€Diketones. Chemis - an Asian Journal, 2018, 13, 2606-2610.	try 3.3	17
88	Nickel-catalyzed enantioselective hydrovinylation of silyl-protected allylic alcohols: An efficient access to homoallylic alcohols with a chiral quaternary center. Science China Chemistry, 2010, 53, 1899-1906.	8.2	16
89	Synthesis of Chiral <i>α</i> â€Benzylâ€ <i>β</i> ² â€hydroxy Carboxylic Acids through Iridiumâ€Catalyzed Asymmetric Hydrogenation of <i>α</i> â€Oxymethylcinnamic Acids. Chinese Journal of Chemistry, 2014, 32, 783-787.	4.9	15
90	Enantioselective O-H Bond Insertion of <i>α</i> -Diazoketones with Alcohols Cooperatively Catalyzed by Achiral Dirhodium Complexes and Chiral Spiro Phosphoric Acids. Acta Chimica Sinica, 2018, 76, 883.	1.4	15

#	Article	IF	CITATIONS
91	Iron-Catalyzed Alkylzincation of Terminal Alkynes. ACS Catalysis, 2022, 12, 2581-2588.	11.2	15
92	Highly Regioâ€, Stereoâ€, and Enantioselective Copperâ€Catalyzed Bâ^'H Bond Insertion of αâ€Silylcarbenes: Efficient Access to Chiral Allylic <i>gem</i> â€Silylboranes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
93	Insertion of Alkylidene Carbenes into B–H Bonds. Journal of the American Chemical Society, 2020, 142, 20924-20929.	13.7	14
94	Stereodiverse Iterative Synthesis of 1,3-Polyol Arrays through Asymmetric Catalytic Hydrogenation. Formal Total Synthesis of (â^)-Cyanolide A. Organic Letters, 2019, 21, 2369-2373.	4.6	9
95	Iterative Synthesis of Polydeoxypropionates Based on Iridium-Catalyzed Asymmetric Hydrogenation of α-Substituted Acrylic Acids. Organic Letters, 2018, 20, 3305-3309.	4.6	8
96	Dirhodiumâ€Catalyzed Enantioselective Bâ^'H Bond Insertion of <i>gem</i> â€Diaryl Carbenes: Efficient Access to <i>gem</i> â€Diarylmethine Boranes. Angewandte Chemie, 2021, 133, 24416-24421.	2.0	7
97	Iodineâ€Catalyzed Oxidative Rearrangement of Amines to αâ€Amino Acetals and αâ€Amino Aldehydes. Advanced Synthesis and Catalysis, 2019, 361, 1289-1294.	4.3	6
98	Nickel-Catalyzed Desymmetrizing Cyclization of 1,6-Dienes to Construct Quaternary Stereocenters. Organic Letters, 2021, 23, 3814-3817.	4.6	6
99	Iron-catalysed hydroalumination of internal alkynes. Chemical Science, 2022, 13, 7873-7879.	7.4	6
100	Cu/PCy 3 atalyzed Formal Carbene Insertion into Electronâ€Deficient Câ^'H Bonds. ChemCatChem, 2020, 12, 4267-4271.	3.7	5
101	Enantioselective Total Synthesis of (â^')â€Doliculide Using Catalytic Asymmetric Hydrogenations. Helvetica Chimica Acta, 2019, 102, e1900023.	1.6	4
102	Chiral Dirhodium Tetraphosphate-Catalyzed Enantioselective Si–H Bond Insertion of α-Aryldiazoacetates. Journal of Organic Chemistry, 2021, 86, 9692-9698.	3.2	3
103	Investigation of the Acid-Mediated Photosensitized Reactions of Amphiphilic α-Keto Acids at the Air–Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 2306-2312.	2.8	2
104	Highly Regioâ€, Stereoâ€, and Enantioselective Copperâ€Catalyzed Bâ^'H Bond Insertion of αâ€Silylcarbenes: Efficient Access to Chiral Allylic <i>gem</i> â€Silylboranes. Angewandte Chemie, 2022, 134, .	2.0	0