
Christian M Wetzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5293758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring swift-heavy ion irradiation of InGaN/GaN multiple quantum wells for green-emitters: the use of Raman and photoluminescence to assess the irradiation effects on the optical and structural properties. Journal of Materials Chemistry C, 2021, 9, 8809-8818.	5.5	5
2	Effect of InGaN/GaN superlattice as underlayer on characteristics of AlGaN/GaN HEMT. AIP Advances, 2020, 10, 025133.	1.3	6
3	Improved electrical performance of MOCVD-grown GaN p-i-n diodes with high-low junction p-layers. Solid-State Electronics, 2019, 162, 107646.	1.4	3
4	Elastic Variation of Quasi-One-Dimensional Cubic-Phase GaN at Nanoscale. Crystal Growth and Design, 2019, 19, 5046-5053.	3.0	0
5	Monolithically Integrated GaN LED/Quasi-Vertical Power U-Shaped Trench-Gate MOSFET Pairs Using Selective Epi Removal. IEEE Electron Device Letters, 2019, 40, 1736-1739.	3.9	11
6	Initial stage of cubic GaN for heterophase epitaxial growth induced on nanoscale v-grooved Si(001) in metal-organic vapor-phase epitaxy. Nanotechnology, 2019, 30, 025711.	2.6	2
7	Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering. 2D Materials, 2018, 5, 021002.	4.4	75
8	Communicating Two States in Perovskite Revealed by Time-Resolved Photoluminescence Spectroscopy. Scientific Reports, 2018, 8, 16482.	3.3	18
9	Enhanced Light Emission from the Ridge of Two-Dimensional InSe Flakes. Nano Letters, 2018, 18, 5078-5084.	9.1	35
10	Optimizing GaInN/GaN light-emitting diode structures under piezoelectric polarization. Journal of Applied Physics, 2017, 122, .	2.5	10
11	Nanopatterned epitaxy of non-polar Ga1-yInyN layers with caps and voids. Journal of Applied Physics, 2017, 122, 094303.	2.5	1
12	Green Emitting Cubic GalnN/GaN Quantum Well Stripes on Micropatterned Si(001) and Their Strain Analysis. Advanced Electronic Materials, 2016, 2, 1500327.	5.1	18
13	Atomic-Scale Phase Transition of Epitaxial GaN on Nanostructured Si(001): Activation and Beyond. Crystal Growth and Design, 2016, 16, 2183-2189.	3.0	5
14	Quantitative Chemical Mapping of InGaN Quantum Wells from Calibrated High-Angle Annular Dark Field Micrographs. Microscopy and Microanalysis, 2015, 21, 994-1005.	0.4	3
15	Luminescence studies on green emitting InGaN/GaN MQWs implanted with nitrogen. Scientific Reports, 2015, 5, 9703.	3.3	19
16	Incorporation of indium on cubic GaN epitaxially induced on a nanofaceted Si(001) substrate by phase transition. Applied Physics Letters, 2015, 107, .	3.3	10
17	Analysis of the stability of InGaN/GaN multiquantum wells against ion beam intermixing. Nanotechnology, 2015, 26, 425703.	2.6	6
18	High temperature characteristics of monolithically integrated LED and MOSâ€channel HEMT in GaN using selective epi removal. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1110-1115	1.8	19

#	Article	IF	CITATIONS
19	(Invited) Group-III Nitrides to the Extreme from LEDs and Solar Cells to the Transistor. ECS Transactions, 2015, 66, 139-141.	0.5	0
20	(Invited) Growth of Non-Polar Cubic GaN on Common Si. ECS Transactions, 2015, 66, 41-44.	0.5	0
21	High 400 °C operation temperature blue spectrum concentration solar junction in GaInN/GaN. Applied Physics Letters, 2014, 105, .	3.3	14
22	On the reliable analysis of indium mole fraction within InxGa1â^'xN quantum wells using atom probe tomography. Applied Physics Letters, 2014, 104, 152102.	3.3	35
23	Photoluminescence of GalnN/GaN multiple quantum well heterostructures on amorphous surface through biaxial metal buffer layers. Nano Energy, 2014, 5, 1-8.	16.0	11
24	Rare-Earth-Free Direct-Emitting Light-Emitting Diodes for Solid-State Lighting. IEEE Transactions on Industry Applications, 2014, 50, 1469-1477.	4.9	2
25	Direct green LED development in nano-patterned epitaxy. , 2013, , .		1
26	Green cubic GalnN/GaN light-emitting diode on microstructured silicon (100). Applied Physics Letters, 2013, 103, .	3.3	37
27	Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Applied Physics Letters, 2013, 102, .	3.3	90
28	HOW DO WE LOSE EXCITATION IN THE GREEN?. , 2013, , .		0
29	Evaluation of metal/indium-tin-oxide for transparent low-resistance contacts to p-type GaN. Applied Optics, 2012, 51, 5596.	1.8	14
30	a-Plane GaN light emitting diodes on self-assembled Ni nano-islands. , 2012, , .		0
31	Fish scale terrace GalnN/GaN light-emitting diodes with enhanced light extraction. Applied Physics Letters, 2012, 101, 232106.	3.3	Ο
32	GaN-based light emitting diode with embedded SiO <inf>2</inf> pattern for enhanced light extraction. , 2012, , .		1
33	Effects of oxygen thermal annealing treatment on formation of ohmic contacts to n-GaN. Applied Physics Letters, 2012, 101, .	3.3	8
34	Cubic GalnN/GaN Multi-Quantum Wells for Increased Smart Lighting System Efficiency. , 2012, , .		1
35	Development of Direct Green Emitting LEDs. , 2012, , .		0
36	Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Applied Physics Letters, 2011, 98, .	3.3	186

#	Article	IF	CITATIONS
37	Phosphor-free white: the prospects for green direct emitters. Proceedings of SPIE, 2011, , .	0.8	3
38	Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency. Optics Express, 2011, 19, A962.	3.4	19
39	Non-polar GaInN-based light-emitting diodes: an approach for wavelength-stable and polarized-light emitters. , 2011, , .		2
40	Ridgeâ€type AlGaInNâ€based laser diode structure by selective regrowth. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1603-1606.	1.8	0
41	The role of mesa size in nanoâ€structured green AlGaInN lightâ€emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2311-2314.	0.8	3
42	Photocurrent spectroscopy on GaInN/GaN multiple quantum well solar cell structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2469-2472.	0.8	0
43	Preface: Phys. Status Solidi C 7–8/2011. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2009-2012.	0.8	Ο
44	INTEGRATION OF N - AND P -CONTACTS TO GaN -BASED LIGHT EMITTING DIODES. International Journal of High Speed Electronics and Systems, 2011, 20, 521-525.	0.7	2
45	HOW DO WE LOSE EXCITATION IN THE GREEN?. International Journal of High Speed Electronics and Systems, 2011, 20, 13-25.	0.7	2
46	UV Light Emitter on Bulk Semipolar (11-22) GaN. , 2011, , .		0
47	Boosting Green GalnN/GaN Light-Emitting Diode Performance by a GalnN Underlying Layer. IEEE Transactions on Electron Devices, 2010, 57, 2639-2643.	3.0	16
48	Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes. Thin Solid Films, 2010, 518, 1732-1736.	1.8	28
49	Various misfit dislocations in green and yellow GalnN/GaN light emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1305-1308.	1.8	21
50	Cyan and green light emitting diode on nonâ€polar <i>m</i> â€plane GaN bulk substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2190-2192.	0.8	4
51	Highly Polarized Green Light Emitting Diode in <i>m</i> -Axis GaInN/GaN. Applied Physics Express, 2010, 3, 102103.	2.4	29
52	A probabilistic approach for assessing the crosswind stability of ground vehicles. Vehicle System Dynamics, 2010, 48, 411-428.	3.7	26
53	Wavelength-stable cyan and green light emitting diodes on nonpolar m-plane GaN bulk substrates. Applied Physics Letters, 2010, 96, .	3.3	59
54	On reliability and sensitivity methods for vehicle systems under stochastic crosswind loads. Vehicle System Dynamics, 2010, 48, 79-95.	3.7	27

#	Article	IF	CITATIONS
55	Inclined dislocation-pair relaxation mechanism in homoepitaxial green GalnN/GaN light-emitting diodes. Physical Review B, 2010, 81, .	3.2	29
56	Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells. Applied Physics Letters, 2010, 96, .	3.3	52
57	GaN/ZnO and AlGaN/ZnO Heterostructure LEDs: Growth, Fabrication, Optical and Electrical Characterization. Materials Research Society Symposia Proceedings, 2009, 1201, 35.	0.1	Ο
58	Enhanced device performance of GalnNâ€based deep green light emitting diodes with Vâ€defectâ€free active region. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S840.	0.8	14
59	Depth profile of donor–acceptor pair transition revealing its effect on the efficiency of green LEDs. Physica B: Condensed Matter, 2009, 404, 4899-4902.	2.7	5
60	Growth and characterization of green GaInN-based light emitting diodes on free-standing non-polar GaN templates. Journal of Crystal Growth, 2009, 311, 2937-2941.	1.5	14
61	Characterization of GaInN/GaN layers for green emitting laser diodes. Journal of Crystal Growth, 2009, 311, 2942-2947.	1.5	10
62	Green LED development in polar and non-polar growth orientation. Proceedings of SPIE, 2009, , .	0.8	5
63	Junction Temperature Measurements and Thermal Modeling of GalnN/GaN Quantum Well Light-Emitting Diodes. Journal of Electronic Materials, 2008, 37, 607-610.	2.2	39
64	Structural Characterization of Homoepitaxial Blue GalnN/GaN Light-Emitting Diodes by Transmission Electron Microscopy. Journal of Electronic Materials, 2008, 37, 641-645.	2.2	6
65	Improved performance of GaInN based deep green light emitting diodes through Vâ€defect reduction. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2207-2209.	0.8	16
66	Vâ€defect analysis in green and deep green light emitting diode structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1777-1779.	0.8	10
67	Junction temperature analysis in green light emitting diode dies on sapphire and GaN substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2247-2249.	0.8	16
68	Photon modulated electroluminescence of GaInN/GaN multiple quantum well light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2293-2295.	0.8	2
69	Very strong nonlinear optical absorption in green GalnN/GaN multiple quantum well structures. Physica Status Solidi (B): Basic Research, 2008, 245, 916-919.	1.5	1
70	Light-emitting diode development on polar and non-polar GaN substrates. Journal of Crystal Growth, 2008, 310, 3987-3991.	1.5	62
71	Radiation Effects on InGaN Quantum Wells and GaN Simultaneously Probed by Ion Beam-Induced Luminescence. IEEE Transactions on Nuclear Science, 2008, 55, 3633-3637.	2.0	6
72	Green light emitting diodes on a-plane GaN bulk substrates. Applied Physics Letters, 2008, 92, .	3.3	69

#	Article	IF	CITATIONS
73	Development of high efficiency green and deep green light emitters in piezoelectric group-iii nitrides. , 2007, , .		Ο
74	Green Light Emitting Diodes under Photon Modulation. Materials Research Society Symposia Proceedings, 2007, 1040, 1.	0.1	0
75	Current and optical low-frequency noise of GalnN/GaN green light emitting diodes. , 2007, 6600, 174.		2
76	Development of High Efficiency Green and Deep Green Light Emitters in Piezoelectric Group-III Nitrides. , 2007, , .		0
77	Radiation damage mechanisms for luminescence in Eu-doped GaN. Journal of Applied Physics, 2007, 101, 054902.	2.5	7
78	SPATIAL SPECTRAL ANALYSIS IN HIGH BRIGHTNESS GaInN/GaN LIGHT EMITTING DIODES. International Journal of High Speed Electronics and Systems, 2007, 17, 29-33.	0.7	0
79	Superluminescence in Green Emission GalnN/GaN Quantum Well Structures under Pulsed Laser Excitation. Materials Research Society Symposia Proceedings, 2007, 1040, 1.	0.1	Ο
80	OPTICAL PROPERTIES OF GaInN/GaN MULTI-QUANTUM WELL STRUCTURE AND LIGHT EMITTING DIODE GROWN BY METALORGANIC CHEMICAL VAPOR PHASE EPITAXY. International Journal of High Speed Electronics and Systems, 2007, 17, 81-84.	0.7	0
81	Structural Analysis in Low-V-defect Blue and Green GalnN/GaN Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2007, 1040, 1.	0.1	1
82	LOW TEMPERATURE ELECTROLUMINESCENCE OF GREEN AND DEEP GREEN GalnN/GaN LIGHT EMITTING DIODES. International Journal of High Speed Electronics and Systems, 2007, 17, 25-28.	0.7	1
83	Dislocation analysis in homoepitaxial GaInN/GaN light emitting diode growth. Journal of Crystal Growth, 2007, 298, 272-275.	1.5	27
84	The quantum efficiency of green GalnN/GaN light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 9-12.	0.8	17
85	Temperature dependence of the quantum efficiency in green light emitting diode dies. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2784-2787.	0.8	5
86	Optimization of High-Quality AlN Epitaxially Grown on (0001) Sapphire by Metal-Organic Vapor-Phase Epitaxy. Journal of Electronic Materials, 2007, 36, 533-537.	2.2	14
87	LOW TEMPERATURE ELECTROLUMINESCENCE OF GREEN AND DEEP GREEN GalnN / GaN LIGHT EMITTING DIODES. , 2007, , .		1
88	SPATIAL SPECTRAL ANALYSIS IN HIGH BRIGHTNESS GaInN / GaN LIGHT EMITTING DIODES. , 2007, , .		0
89	Optical and structural investigation on InGaN/GaN multiple quantum well light-emitting diodes grown on sapphire by metalorganic chemical vapor deposition. , 2006, 6337, 38.		4
90	Time resolved charge profiling of polarization dipoles in high power 525 nm green GaInN/GaN light emitting structures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1806-1810.	1.8	0

#	Article	IF	CITATIONS
91	Optical and structural properties of InGaN/GaN multiple quantum well structure grown by metalorganic chemical vapor deposition. Thin Solid Films, 2006, 498, 123-127.	1.8	28
92	Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GalnN/GaN LED Dies. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
93	Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
94	Ultrafast Carrier Dynamics and Recombination in Green Emitting InGaN MQW LED. Materials Research Society Symposia Proceedings, 2006, 916, 10.	0.1	3
95	Very high quality AlN grown on (0001) sapphire by metal-organic vapor phase epitaxy. Applied Physics Letters, 2006, 89, 103106.	3.3	44
96	Wavelength-resolved low-frequency noise of GalnNâ^•GaN green light emitting diodes. Journal of Applied Physics, 2006, 100, 084506.	2.5	10
97	Internal omni-directional reflector using a low refractive index material for light-emitting diodes. , 2005, , .		Ο
98	Optimization of green and deep green GalnN/GaN light emitting diodes for homogeneity. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2871-2873.	0.8	9
99	Charge Profiling of the p-AlGaN Electron Blocking Layer in AlGaInN Light Emitting Diode Structures. Materials Research Society Symposia Proceedings, 2005, 892, 424.	0.1	Ο
100	Development of high-power green light emitting diode dies in piezoelectric GaInN/GaN. , 2005, , .		0
101	Analysis of the Quantum Efficiency of GalnN/GaN Light Emitting Diodes in the Range of 390 - 580 nm. Materials Research Society Symposia Proceedings, 2005, 892, 212.	0.1	Ο
102	Development of High Power Green Light Emitting Diode Chips. MRS Internet Journal of Nitride Semiconductor Research, 2005, 10, 1.	1.0	27
103	Discrete Steps in the Capacitance-Voltage Characteristics of GalnN/GaN Light Emitting Diode Structures. Materials Research Society Symposia Proceedings, 2004, 831, 449.	0.1	9
104	Analysis of the wavelength-power performance roll-off in green light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2421-2424.	0.8	4
105	GalnNâ^•GaN growth optimization for high-power green light-emitting diodes. Applied Physics Letters, 2004, 85, 866-868.	3.3	71
106	Optical Absorption in Polarized Ga1-xInxN/GaN Quantum Wells. Japanese Journal of Applied Physics, 2002, 41, 11-14.	1.5	18
107	Optical transitions in piezoelectrically polarized GaInN/GaN quantum wells. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 216.	1.6	1
108	DX-like behavior of oxygen in GaN. Physica B: Condensed Matter, 2001, 302-303, 23-38.	2.7	13

#	Article	IF	CITATIONS
109	Absorption Spectroscopy and Band Structure in Polarized GaN/AlxGa1?xN Quantum Wells. Physica Status Solidi A, 2001, 183, 51-60.	1.7	5
110	Piezoelectric polarization in the radiative centers of GalnN/GaN quantum wells and devices. Journal of Electronic Materials, 2000, 29, 252-255.	2.2	4
111	Nitride-based laser diodes using thick n-AlGaN layers. Journal of Electronic Materials, 2000, 29, 302-305.	2.2	Ο
112	Piezoelectric Polarization in GalnN/GaN Heterostructures and Some Consequences for Device Design. Japanese Journal of Applied Physics, 2000, 39, 2425-2427.	1.5	12
113	Anomalous features in the optical properties of Al1â^'xInxN on GaN grown by metal organic vapor phase epitaxy. Applied Physics Letters, 2000, 76, 876-878.	3.3	108
114	Quantized states inGa1â^'xInxN/GaNheterostructures and the model of polarized homogeneous quantum wells. Physical Review B, 2000, 62, R13302-R13305.	3.2	50
115	Defect and Stress Control of Algan and Fabrication of High-Efficiency Uv-Led. Materials Research Society Symposia Proceedings, 2000, 639, 1271.	0.1	3
116	Localized vibrational modes in GaN:O tracing the formation of oxygenDX-like centers under hydrostatic pressure. Physical Review B, 2000, 61, 8202-8206.	3.2	15
117	Electric-field strength, polarization dipole, and multi-interface band offset in piezoelectricGa1â ^{°3} xInxN/GaNquantum-well structures. Physical Review B, 2000, 61, 2159-2163.	3.2	58
118	Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 957-969.	1.0	0
119	Improvement of Crystalline Quality of Group III Nitrides on Sapphire Using Low Temperature Interlayers. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 870-877.	1.0	11
120	Piezoelectric Stark-like Ladder in GaN/GaInN/GaN Heterostructures. Japanese Journal of Applied Physics, 1999, 38, L163-L165.	1.5	28
121	Structural properties of InN on GaN grown by metalorganic vapor-phase epitaxy. Journal of Applied Physics, 1999, 85, 7682-7688.	2.5	108
122	Piezoelectric Franz–Keldysh effect in strained GaInN/GaN heterostructures. Journal of Applied Physics, 1999, 85, 3786-3791.	2.5	86
123	Correlation of vibrational modes and DX-like centers in GaN:O. Physica B: Condensed Matter, 1999, 273-274, 109-112.	2.7	3
124	GaN-based laser diode with focused ion beam-etched mirrors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 382-385.	3.5	9
125	Discrete Stark-Like Ladder in Piezoelectric GaInN/GaN Quantum Wells. Physica Status Solidi (B): Basic Research, 1999, 216, 399-403.	1.5	4
126	Control of Dislocations and Stress in AlGaN on Sapphire Using a Low Temperature Interlayer. Physica Status Solidi (B): Basic Research, 1999, 216, 683-689.	1.5	80

#	Article	IF	CITATIONS
127	Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	0
128	Piezoelectric Level Splitting in GalnN/GaN Quantum Wells. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 357-362.	1.0	0
129	Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 1998, 195, 309-313.	1.5	94
130	Valence band splitting and luminescence Stokes shift in GaInN/GaN thin films and multiple quantum well structures. Journal of Crystal Growth, 1998, 189-190, 621-624.	1.5	8
131	Characterization of the crystalline quality on GaN on sapphire and ternary alloys. Electronics and Communications in Japan, 1998, 81, 48-54.	0.2	2
132	Determination of piezoelectric fields in strained GalnN quantum wells using the quantum-confined Stark effect. Applied Physics Letters, 1998, 73, 1691-1693.	3.3	596
133	Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN. Japanese Journal of Applied Physics, 1998, 37, L316-L318.	1.5	184
134	Improvement of Crystalline Quality of Group III Nitrides on Sapphire Using Low Temperature Interlayers. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
135	Optical band gap in Ga1â^'xlnxN (0 <x<0.2) applied="" by="" gan="" on="" photoreflection="" physics<br="" spectroscopy.="">Letters, 1998, 73, 1994-1996.</x<0.2)>	3.3	184
136	Heteroepitaxy of Group III Nitrides for Device Applications. Materials Science Forum, 1998, 264-268, 1115-1120.	0.3	10
137	GaN Based Laser Diode with Focused Ion Beam Etched Mirrors. Japanese Journal of Applied Physics, 1998, 37, L444-L446.	1.5	43
138	Observation of photoluminescence from Al1â^'xInxN heteroepitaxial films grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 1998, 73, 830-831.	3.3	34
139	Structural Properties of Al 1- xIn xN Ternary Alloys on GaN Grown by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1998, 37, L697-L699.	1.5	36
140	On the Bandstructure in GalnN/GaN Heterostructures - Strain, Band Gap and Piezoelectric Effect. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	26
141	Piezoelectric Level Splitting in GalnN/GaN Quantum Wells. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
142	Piezoelectric Quantization in GalnN thin Films and Multiple Quantum Well Structures. Materials Research Society Symposia Proceedings, 1998, 512, 181.	0.1	7
143	Pressure Induced Deep Gap State of Oxygen in GaN. Physical Review Letters, 1997, 78, 3923-3926.	7.8	223

144 On the nature of radiative recombination processes in GaN. , 1997, , .

0

#	Article	IF	CITATIONS
145	X-Ray Photoelectron Diffraction Measurements of Hexagonal GaN(0004) Thin Films. Materials Research Society Symposia Proceedings, 1997, 468, 263.	0.1	7
146	Structural Properties of Nitrides Grown by Omvpe on Sapphire Substrate. Materials Research Society Symposia Proceedings, 1997, 482, 523.	0.1	2
147	Localized Donors in Gan: Spectroscopy Using Large Pressures. Materials Research Society Symposia Proceedings, 1997, 482, 533.	0.1	16
148	Future challenges and directions for nitride materials and light emitters. Proceedings of the IEEE, 1997, 85, 1750-1751.	21.3	17
149	Properties of GaN grown at high rates on sapphire and on 6H–SiC. Applied Physics Letters, 1996, 69, 2716-2718.	3.3	39
150	Electron-Phonon Scattering in Si-Doped GaN. Materials Research Society Symposia Proceedings, 1996, 449, 567.	0.1	12
151	Optical investigation of deep defects in GaN epitaxial layers grown on 6H-SiC. Materials Science and Technology, 1996, 12, 90-93.	1.6	4
152	Si in GaN — On the Nature of the Background Donor. Physica Status Solidi (B): Basic Research, 1996, 198, 243-249.	1.5	13
153	Infrared reflection of GaN and AlGaN thin film heterostructures with AlN buffer layers. Applied Physics Letters, 1996, 68, 2547-2549.	3.3	37
154	Dynamics of boundâ€exciton luminescences from epitaxial GaN. Applied Physics Letters, 1996, 68, 415-417.	3.3	78
155	Carrier localization of as-grownn-type gallium nitride under large hydrostatic pressure. Physical Review B, 1996, 53, 1322-1326.	3.2	76
156	Electron effective mass and nonparabolicity inGa0.47In0.53As/InP quantum wells. Physical Review B, 1996, 53, 1038-1041.	3.2	50
157	Strongly localized excitons in gallium nitride. Applied Physics Letters, 1996, 68, 2556-2558.	3.3	65
158	Photoluminescence Studies of GaN and AlGaN Layers Under Hydrostatic Pressure. Materials Research Society Symposia Proceedings, 1995, 378, 509.	0.1	4
159	Time Resolved Photoluminescence Spectroscopy on GaN Epitaxial Layers. Materials Research Society Symposia Proceedings, 1995, 378, 521.	0.1	5
160	Defect Studies of GaN under Large Hydrostatic Pressure. Materials Research Society Symposia Proceedings, 1995, 395, 417.	0.1	5
161	Identification of Transition Metals in GaN. Materials Research Society Symposia Proceedings, 1995, 395, 491.	0.1	4
162	Fine Structure of the 3.42 eV Emission Band in GaN. Materials Research Society Symposia Proceedings, 1995, 395, 571.	0.1	23

#	Article	IF	CITATIONS
163	Two-dimensional wannier excitons. Effects of a random adiabatic potential. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1447-1452.	0.4	3
164	Optically detected cyclotron resonance on GaAs/AlxGa1â^'xAs quantum wells and quantum wires. Physical Review B, 1995, 52, 11313-11318.	3.2	9
165	Carrier Localization in Gallium Nitride. Materials Science Forum, 1995, 196-201, 31-36.	0.3	0
166	On pâ€ŧype doping in GaN—acceptor binding energies. Applied Physics Letters, 1995, 67, 1298-1300.	3.3	262
167	Effect of a random adiabatic potential on the optical properties of two-dimensional excitons. Physical Review B, 1995, 52, 8384-8390.	3.2	34
168	GaN epitaxial layers grown on 6H‣iC by the sublimation sandwich technique. Applied Physics Letters, 1994, 65, 1033-1035.	3.3	84
169	Conduction-band spin splitting of type-IGaxIn1â^'xAs/InP quantum wells. Physical Review B, 1994, 49, 14786-14789.	3.2	44
170	Modulated cyclotron resonance in multi-quantum well structure of In0.53Ga0.47As/InP induced by interband and exciton excitation. Journal of Infrared, Millimeter and Terahertz Waves, 1994, 15, 237-246.	0.6	0
171	Recombination dynamics in strained In1-xGaxAs/InP-quantum well structures. Superlattices and Microstructures, 1994, 15, 303.	3.1	4
172	The conduction band spin splitting in type-I strained and unstrained (GaIn)As/InP quantum wells. Solid-State Electronics, 1994, 37, 669-672.	1.4	6
173	GaN On 6H-SiC – Structural And Optical Properties. Materials Research Society Symposia Proceedings, 1994, 339, 453.	0.1	9
174	Novel applications of contactless characterization techniques in epitaxial crystals and quantum well structures. Journal of Crystal Growth, 1993, 128, 567-570.	1.5	6
175	Magneto-optical and far-infrared optically detected cyclotron resonance determination of the effective mass in GaAs1â°'xPx. Physica B: Condensed Matter, 1993, 184, 164-167.	2.7	1
176	Electron effective mass in direct-band-gapGaAs1â^'xPxalloys. Physical Review B, 1993, 47, 15588-15592.	3.2	18
177	Composition dependence of the inâ€plane effective mass in latticeâ€mismatched, strained Ga1â^'xInxAs/InP single quantum wells. Applied Physics Letters, 1993, 63, 657-659.	3.3	16
178	Application of microwave detection of the Shubnikov–de Haas effect in twoâ€dimensional systems. Journal of Applied Physics, 1993, 73, 7533-7542.	2.5	26
179	Microwave and far-infrared induced optically detected cyclotron resonance in epitaxial InP and GaAs. Physical Review B, 1992, 45, 1504-1506.	3.2	35
180	Spin dependent recombination in Ptâ€doped siliconpâ€njunctions. Applied Physics Letters, 1992, 60, 1857-1859.	3.3	24

#	Article	IF	CITATIONS
181	Dependence on quantum confinement of the in-plane effective mass inGa0.47In0.53As/InP quantum wells. Physical Review B, 1992, 45, 14052-14056.	3.2	47
182	<title>Optically detected cyclotron resonance determination of the in-plane effective mass in
Ga<formula><inf><roman>0.47</roman></inf></formula>In<formula><inf><roman>0.53</roman></inf></formu
single quantum wells</title> ., 1992, , .	la>As/InP	0
183	Photoluminescence and optically detected impact ionization studies of CalnAs/InP strained layer superlattices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1991, 9, 293-296.	3.5	Ο
184	High Quality Interfaces in a-Si:H/a-Sic:H Superlattices. Materials Research Society Symposia Proceedings, 1990, 192, 237.	0.1	7
185	Properties of Gainasp Alloys Investigated by Optically Detected Macnetic Resonance Techniques. Materials Research Society Symposia Proceedings, 1990, 216, 353.	0.1	1
186	Photothermal deflection spectroscopy of InGaAs/InP quantum wells. Semiconductor Science and Technology, 1990, 5, 702-706.	2.0	2
187	Photothermal deflection spectroscopy as a method for studying quantum-well heterostructures. Superlattices and Microstructures, 1989, 6, 99-102.	3.1	6
188	Spin Dependent Recombination at Deep Centers in Si - Electrically Detected Magnetic Resonance. Materials Science Forum, 0, 83-87, 1165-1170.	0.3	2
189	Optical properties of GaInN/GaN heterostructures and quantum wells. , 0, , .		0