Ekaitz Errasti-Murugarren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5293607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology. Neurochemical Research, 2022, 47, 23-36.	3.3	10
2	HATs meet structural biology. Current Opinion in Structural Biology, 2022, 74, 102389.	5.7	1
3	Membrane Protein Stabilization Strategies for Structural and Functional Studies. Membranes, 2021, 11, 155.	3.0	17
4	Rush Hour of LATs towards Their Transport Cycle. Membranes, 2021, 11, 602.	3.0	7
5	Structural basis for substrate specificity of heteromeric transporters of neutral amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
6	Facilitated Diffusion of Proline across Membranes of Liposomes and Living Cells by a Calix[4]pyrrole Cavitand. CheM, 2020, 6, 3054-3070.	11.7	20
7	Functional characterization of the alanine-serine-cysteine exchanger of <i>Carnobacterium sp AT7</i> . Journal of General Physiology, 2019, 151, 505-517.	1.9	8
8	Dysfunctional LAT2 Amino Acid Transporter Is Associated With Cataract in Mouse and Humans. Frontiers in Physiology, 2019, 10, 688.	2.8	28
9	L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nature Communications, 2019, 10, 1807.	12.8	57
10	Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell, 2019, 177, 881-895.e17.	28.9	209
11	Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. ELife, 2018, 7, .	6.0	38
12	Split GFP Complementation as Reporter of Membrane Protein Expression and Stability in E. coli: A Tool to Engineer Stability in a LAT Transporter. Methods in Molecular Biology, 2017, 1586, 181-195.	0.9	2
13	Stabilization of a prokaryotic LAT transporter by random mutagenesis. Journal of General Physiology, 2016, 147, 353-368.	1.9	10
14	Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms. Biochemical Society Transactions, 2016, 44, 745-752.	3.4	29
15	Nucleoside transporters and human organic cation transporter 1 determine the cellular handling of DNAâ€methyltransferase inhibitors. British Journal of Pharmacology, 2014, 171, 3868-3880.	5.4	21
16	Functional analysis of the human concentrative nucleoside transporter-1 variant hCNT1S546P provides insight into the sodium-binding pocket. American Journal of Physiology - Cell Physiology, 2012, 302, C257-C266.	4.6	12
17	Role of the Transporter Regulator Protein (RS1) in the Modulation of Concentrative Nucleoside Transporters (CNTs) in Epithelia. Molecular Pharmacology, 2012, 82, 59-67.	2.3	12
18	Functional outcome of a novel SLC29A3 mutation identified in a patient with H syndrome. Biochemical and Biophysical Research Communications, 2012, 428, 532-537.	2.1	10

#	Article	IF	CITATIONS
19	Expression and Distribution of Nucleoside Transporter Proteins in the Human Syncytiotrophoblast. Molecular Pharmacology, 2011, 80, 809-817.	2.3	32
20	Molecular basis of substrate-induced permeation by an amino acid antiporter. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3935-3940.	7.1	139
21	Different N-Terminal Motifs Determine Plasma Membrane Targeting of the Human Concentrative Nucleoside Transporter 3 in Polarized and Nonpolarized Cells. Molecular Pharmacology, 2010, 78, 795-803.	2.3	15
22	The Human Concentrative Nucleoside Transporter-3 C602R Variant Shows Impaired Sorting to Lipid Rafts and Altered Specificity for Nucleoside-Derived Drugs. Molecular Pharmacology, 2010, 78, 157-165.	2.3	19
23	Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics, 2010, 11, 809-841.	1.3	60
24	A splice variant of the <i>SLC28A3</i> gene encodes a novel human concentrative nucleoside transporterâ€3 (hCNT3) protein localized in the endoplasmic reticulum. FASEB Journal, 2009, 23, 172-182.	0.5	42
25	SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica, 2008, 38, 972-994.	1.1	74
26	Functional Characterization of a Nucleoside-Derived Drug Transporter Variant (hCNT3C602R) Showing Altered Sodium-Binding Capacity. Molecular Pharmacology, 2008, 73, 379-386.	2.3	28
27	Interaction of nucleosideâ€derivatives with the human Na ⁺ /nucleoside cotransporters CNT1 and CNT3. FASEB Journal, 2008, 22, 133-133.	0.5	1
28	Role of CNT3 in the transepithelial flux of nucleosides and nucleoside-derived drugs. Journal of Physiology, 2007, 582, 1249-1260.	2.9	57
29	Concentrative nucleoside transporters (CNTs) in epithelia: from absorption to cell signaling. Journal of Physiology and Biochemistry, 2007, 63, 97-110.	3.0	31
30	Expression of concentrative nucleoside transporters SLC28 (CNT1, CNT2, and CNT3) along the rat nephron: Effect of diabetes. Kidney International, 2005, 68, 665-672.	5.2	41