
## **Guy Griebel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292755/publications.pdf Version: 2024-02-01



CUV CDIEREI

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                          | IF               | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 1  | Measuring normal and pathological anxiety-like behaviour in mice: a review. Behavioural Brain<br>Research, 2001, 125, 141-149.                                                                                                                                                                                                                                                                   | 2.2              | 753           |
| 2  | Drug-Dependent Requirement of Hippocampal Neurogenesis in a Model of Depression and of Antidepressant Reversal. Biological Psychiatry, 2008, 64, 293-301.                                                                                                                                                                                                                                        | 1.3              | 482           |
| 3  | Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V <sub>1b</sub> receptor<br>antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6370-6375.                                                                             | 7.1              | 450           |
| 4  | 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: More than 30 years of research. , 1995, 65, 319-395.                                                                                                                                                                                                                                                                |                  | 438           |
| 5  | Antidepressants recruit new neurons to improve stress response regulation. Molecular Psychiatry, 2011, 16, 1177-1188.                                                                                                                                                                                                                                                                            | 7.9              | 406           |
| 6  | Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology, 2000, 148, 164-170.                                                                                                                                                                                                                                          | 3.1              | 379           |
| 7  | Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic.<br>Neuroscience and Biobehavioral Reviews, 2001, 25, 205-218.                                                                                                                                                                                                                                            | 6.1              | 379           |
| 8  | Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends in<br>Pharmacological Sciences, 2003, 24, 580-588.                                                                                                                                                                                                                                                | 8.7              | 374           |
| 9  | 50 years of hurdles and hope in anxiolytic drug discovery. Nature Reviews Drug Discovery, 2013, 12, 667-687.                                                                                                                                                                                                                                                                                     | 46.4             | 334           |
| 10 | Risk assessment as an evolved threat detection and analysis process. Neuroscience and Biobehavioral<br>Reviews, 2011, 35, 991-998.                                                                                                                                                                                                                                                               | 6.1              | 329           |
| 11 | Blockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Molecular Psychiatry, 2004, 9, 278-286.                                                                                                                                                                                                                                    | 7.9              | 283           |
| 12 | 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-pro<br>3-thiazol-2-amine Hydrochloride (SSR125543A), a Potent and Selective Corticotrophin-Releasing Factor1<br>Receptor Antagonist. II. Characterization in Rodent Models of Stress-Related Disorders. Journal of<br>Pharmacology and Experimental Therapeutics, 2002, 301, 333-345. | pynyl)-1,<br>2.5 | 242           |
| 13 | SSR180711, a Novel Selective α7 Nicotinic Receptor Partial Agonist: (II) Efficacy in Experimental Models<br>Predictive of Activity Against Cognitive Symptoms of Schizophrenia. Neuropsychopharmacology, 2007,<br>32, 17-34.                                                                                                                                                                     | 5.4              | 239           |
| 14 | Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biological Psychiatry, 2005, 57, 261-267.                                                                                                                                                                                                                                            | 1.3              | 238           |
| 15 | Nicotine-Associated Cues Maintain Nicotine-Seeking Behavior in Rats Several Weeks after Nicotine<br>Withdrawal: Reversal by the Cannabinoid (CB1) Receptor Antagonist, Rimonabant (SR141716).<br>Neuropsychopharmacology, 2005, 30, 145-155.                                                                                                                                                     | 5.4              | 235           |
| 16 | The Mouse Defense Test Battery: pharmacological and behavioral assays for anxiety and panic.<br>European Journal of Pharmacology, 2003, 463, 97-116.                                                                                                                                                                                                                                             | 3.5              | 231           |
| 17 | Differentiation of anxiolytic and panicolytic drugs by effects on rat and mouse defense test batteries.<br>Neuroscience and Biobehavioral Reviews, 1997, 21, 783-789.                                                                                                                                                                                                                            | 6.1              | 223           |
|    | Characterization of<br>(2 <i>S</i> ,4 <i>R</i> )-1-[5-Chloro-1-[(2.4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2.3-dihydro-1 <i:< td=""><td>&gt;H-ind</td><td>ol-3-yl]-4-hy</td></i:<>                                                                                                                                                                                                | >H-ind           | ol-3-yl]-4-hy |

18 (2<i>S</i>,4<i>R</i>)-1-[5-Chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1<i>H</i>-indol-3-yl]-4-hydro carboxamide (SSR149415), a Selective and Orally Active Vasopressin V<sub>1b</sub>Receptor Antagonist. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 1122-1130.

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Neurochemical, Electrophysiological and Pharmacological Profiles of the Selective Inhibitor of the<br>Glycine Transporter-1 SSR504734, a Potential New Type of Antipsychotic. Neuropsychopharmacology,<br>2005, 30, 1963-1985.                 | 5.4  | 215       |
| 20 | Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 625-631. | 4.8  | 202       |
| 21 | Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models in rodents. Psychopharmacology, 1998, 138, 55-66.                                                                           | 3.1  | 200       |
| 22 | SSR180711, a Novel Selective α7 Nicotinic Receptor Partial Agonist: (1) Binding and Functional Profile.<br>Neuropsychopharmacology, 2007, 32, 1-16.                                                                                            | 5.4  | 183       |
| 23 | Risk Assessment Behaviour: Evaluation of Utility in the Study of 5-HT-Related Drugs in the Rat Elevated<br>Plus-Maze Test. Pharmacology Biochemistry and Behavior, 1997, 57, 817-827.                                                          | 2.9  | 177       |
| 24 | Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning?. Nature<br>Reviews Drug Discovery, 2012, 11, 462-478.                                                                                               | 46.4 | 175       |
| 25 | Corticolimbic Transcriptome Changes are State-Dependent and Region-Specific in a Rodent Model of<br>Depression and of Antidepressant Reversal. Neuropsychopharmacology, 2009, 34, 1363-1380.                                                   | 5.4  | 173       |
| 26 | Conditioning and residual emotionality effects of predator stimuli: some reflections on stress and emotion. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 1177-1185.                                               | 4.8  | 169       |
| 27 | ls There a Future for Neuropeptide Receptor Ligands in the Treatment of Anxiety Disorders?. , 1999, 82,<br>1-61.                                                                                                                               |      | 153       |
| 28 | Behavioral and neurochemical changes following predatory stress in mice. Neuropharmacology, 2001, 41, 400-408.                                                                                                                                 | 4.1  | 125       |
| 29 | CB receptor antagonists for the treatment of nicotine addiction. Pharmacology Biochemistry and Behavior, 2005, 81, 387-395.                                                                                                                    | 2.9  | 124       |
| 30 | A Comparative Study of the Effects of Selective and Non-Selective 5-HT2 Receptor Subtype Antagonists in Rat and Mouse Models of Anxiety. Neuropharmacology, 1997, 36, 793-802.                                                                 | 4.1  | 122       |
| 31 | Some critical determinants of the behaviour of rats in the elevated plus-maze. Behavioural Processes, 1993, 29, 37-47.                                                                                                                         | 1.1  | 120       |
| 32 | Acute and chronic treatment with 5-HT reuptake inhibitors differentially modulate emotional responses in anxiety models in rodents. Psychopharmacology, 1994, 113, 463-470.                                                                    | 3.1  | 119       |
| 33 | Differential modulation of antipredator defensive behavior in Swiss-Webster mice following acute or chronic administration of imipramine and fluoxetine. Psychopharmacology, 1995, 120, 57-66.                                                 | 3.1  | 106       |
| 34 | Evidence that the Lateral Septum is Involved in the Antidepressant-Like Effects of the Vasopressin V1b<br>Receptor Antagonist, SSR149415. Neuropsychopharmacology, 2005, 30, 35-42.                                                            | 5.4  | 106       |
| 35 | Stimulation of the β3-Adrenoceptor as a Novel Treatment Strategy for Anxiety and Depressive Disorders. Neuropsychopharmacology, 2008, 33, 574-587.                                                                                             | 5.4  | 102       |
| 36 | Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression.<br>European Journal of Pharmacology, 2004, 497, 49-53.                                                                                     | 3.5  | 99        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                     | IF                              | CITATIONS            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 37 | Further evidence that the mouse defense test battery is useful for screening anxiolytic and<br>panicolytic drugs: Effects of acute and chronic treatment with alprazolam. Neuropharmacology, 1995,<br>34, 1625-1633.                                                                                                                                        | 4.1                             | 96                   |
| 38 | Orphanin FQ, a novel neuropeptide with anti-stress-like activity. Brain Research, 1999, 836, 221-224.                                                                                                                                                                                                                                                       | 2.2                             | 94                   |
| 39 | Functional and Pharmacological Characterization of the First Specific Agonist and Antagonist for the V1b Receptor in Mammals. Stress, 2003, 6, 199-206.                                                                                                                                                                                                     | 1.8                             | 92                   |
| 40 | Selective blockade of the hydrolysis of the endocannabinoid 2-arachidonoylglycerol impairs learning<br>and memory performance while producing antinociceptive activity in rodents. Scientific Reports, 2015,<br>5, 7642.                                                                                                                                    | 3.3                             | 91                   |
| 41 | 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2<br>Hydrochloride (SSR125543A): A Potent and Selective Corticotrophin-Releasing Factor1Receptor<br>Antagonist. I. Biochemical and Pharmacological Characterization. Journal of Pharmacology and<br>Experimental Therapeutics. 2002. 301. 322-332. | 2-propynyl)-1,:<br>2 <b>.</b> 5 | 3-thiazol-2-an<br>87 |
| 42 | Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophreniaâ <sup>-</sup> †. Pharmacology Biochemistry and Behavior, 2008, 91, 47-58.                                                                                                                                   | 2.9                             | 87                   |
| 43 | AVP V selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacology<br>Biochemistry and Behavior, 2005, 80, 189-194.                                                                                                                                                                                                                 | 2.9                             | 85                   |
| 44 | Non-Peptide Vasopressin V1b Receptor Antagonists as Potential Drugs for the Treatment of Stress-Related Disorders. Current Pharmaceutical Design, 2005, 11, 1549-1559.                                                                                                                                                                                      | 1.9                             | 84                   |
| 45 | Behavioral Effects of Acute and Chronic Fluoxetine in Wistar–Kyoto Rats. Physiology and Behavior,<br>1999, 67, 315-320.                                                                                                                                                                                                                                     | 2.1                             | 82                   |
| 46 | Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology, 2006, 187, 237-244.                                                                                                                                                                      | 3.1                             | 82                   |
| 47 | New evidence that the pharmacological effects of benzodiazepine receptor ligands can be associated with activities at different BZ (ω) receptor subtypes. Psychopharmacology, 1999, 146, 205-213.                                                                                                                                                           | 3.1                             | 77                   |
| 48 | Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat.<br>Psychopharmacology, 2009, 202, 385-396.                                                                                                                                 | 3.1                             | 74                   |
| 49 | Benzodiazepine and Serotonergic Modulation of Antipredator and Conspecific Defense. Neuroscience and Biobehavioral Reviews, 1998, 22, 597-612.                                                                                                                                                                                                              | 6.1                             | 72                   |
| 50 | The effects of compounds varying in selectivity as 5-HT1A receptor antagonists in three rat models of anxiety. Neuropharmacology, 2000, 39, 1848-1857.                                                                                                                                                                                                      | 4.1                             | 72                   |
| 51 | An Overview of SSR149415, a Selective Nonpeptide Vasopressin V1b Receptor Antagonist for the Treatment of Stress-Related Disorders. CNS Neuroscience & Therapeutics, 2005, 11, 53-68.                                                                                                                                                                       | 4.0                             | 71                   |
| 52 | SL651498, a GABA <sub>A</sub> Receptor Agonist with Subtype‣elective Efficacy, as a Potential<br>Treatment for Generalized Anxiety Disorder and Muscle Spasms. CNS Neuroscience & Therapeutics,<br>2003, 9, 3-20.                                                                                                                                           | 4.0                             | 70                   |
| 53 | Gender bias in the preclinical psychopharmacology of anxiety: male models for (predominantly) female disorders. Journal of Psychopharmacology, 1995, 9, 79-82.                                                                                                                                                                                              | 4.0                             | 69                   |
| 54 | The Vasopressin V1b Receptor as a Therapeutic Target in Stress-related Disorders. CNS and Neurological Disorders, 2003, 2, 191-200.                                                                                                                                                                                                                         | 4.3                             | 69                   |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Vasopressin V <sub>1b</sub> Receptor Antagonist SSR149415 in the Treatment of Major Depressive and Generalized Anxiety Disorders. Journal of Clinical Psychiatry, 2012, 73, 1403-1411.                                          | 2.2 | 67        |
| 56 | Comparison of the behavioural effects of an adenosine A1/A2-receptor antagonist, CGS 15943A, and an A1-selective antagonist, DPCPX. Psychopharmacology, 1991, 103, 541-544.                                                         | 3.1 | 65        |
| 57 | The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer's disease in rodents. Scientific Reports, 2019, 9, 18045.      | 3.3 | 62        |
| 58 | Evidence that the Behaviors in the Mouse Defense Test Battery Relate to Different Emotional States: A<br>Factor Analytic Study. Physiology and Behavior, 1996, 60, 1255-1260.                                                       | 2.1 | 61        |
| 59 | Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacology Biochemistry and Behavior, 2006, 83, 533-539.                                                              | 2.9 | 61        |
| 60 | Predator-elicited plight responses in Swiss-Webster Mice: An experimental model of panic attacks.<br>Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1996, 20, 185-205.                                             | 4.8 | 60        |
| 61 | Pharmacological studies on synthetic flavonoids: comparison with diazepam. Neuropharmacology, 1999, 38, 965-977.                                                                                                                    | 4.1 | 60        |
| 62 | Behavioral profile of the 5HT1A receptor antagonist (S)-UH-301 in rodents and monkeys. Brain Research<br>Bulletin, 1992, 29, 901-904.                                                                                               | 3.0 | 59        |
| 63 | Additional evidence for anxiolytic- and antidepressant-like activities of saredutant (SR48968), an<br>antagonist at the neurokinin-2 receptor in various rodent-models. Pharmacology Biochemistry and<br>Behavior, 2008, 89, 36-45. | 2.9 | 58        |
| 64 | Genetic differences in the mouse defense test battery. Aggressive Behavior, 1997, 23, 19-31.                                                                                                                                        | 2.4 | 56        |
| 65 | Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the Flinders Sensitive Line rat. Pharmacology Biochemistry and Behavior, 2005, 82, 223-227.                                                     | 2.9 | 56        |
| 66 | The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents. Scientific Reports, 2018, 8, 2416.                                                    | 3.3 | 56        |
| 67 | Behavioral effects of phenelzine in an experimental model for screening anxiolytic and anti-panic<br>drugs: correlation with changes in monoamine–oxidase activity and monoamine levels.<br>Neuropharmacology, 1998, 37, 927-935.   | 4.1 | 55        |
| 68 | SSR181507, a putative atypical antipsychotic with dopamine D2 antagonist and 5-HT1A agonist activities:<br>improvement of social interaction deficits induced by phencyclidine in rats. Neuropharmacology,<br>2004, 46, 1121-1129.  | 4.1 | 55        |
| 69 | Pro-Cognitive and Antipsychotic Efficacy of the α7 Nicotinic Partial Agonist SSR180711 in<br>Pharmacological and Neurodevelopmental Latent Inhibition Models of Schizophrenia.<br>Neuropsychopharmacology, 2009, 34, 1753-1763.     | 5.4 | 55        |
| 70 | Effects of SR48968, a selective non-peptide NK 2 receptor antagonist on emotional processes in rodents. Psychopharmacology, 2001, 158, 241-251.                                                                                     | 3.1 | 54        |
| 71 | Behavioural profiles in the mouse defence test battery suggest anxiolytic potential of 5-HT 1A receptor antagonists. Psychopharmacology, 1999, 144, 121-130.                                                                        | 3.1 | 53        |
| 72 | Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: A<br>mouse model of post-traumatic stress disorder (PTSD). Behavioural Brain Research, 2011, 221, 149-154.                           | 2.2 | 53        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                         | lF                | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 73 | Optogenetics to study the circuits of fear- and depression-like behaviors: A critical analysis.<br>Pharmacology Biochemistry and Behavior, 2014, 122, 144-157.                                                                                                                                                                                                                  | 2.9               | 53                  |
| 74 | An Ethopharmacological Analysis of Selective Activation of 5-HT1A Receptors: The Mouse 5-HT1A Syndrome. Pharmacology Biochemistry and Behavior, 1997, 57, 897-908.                                                                                                                                                                                                              | 2.9               | 51                  |
| 75 | SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonist, alleviates disturbances of novelty discrimination in a social context in rats, a putative model of selective attention deficit. Psychopharmacology, 2005, 181, 134-144.                                                                                                                               | 3.1               | 50                  |
| 76 | Confirmation of antidepressant potential of the selective Î <sup>2</sup> 3 adrenoceptor agonist amibegron in an an animal model of depression. Pharmacology Biochemistry and Behavior, 2008, 89, 623-626.                                                                                                                                                                       | 2.9               | 49                  |
| 77 | Disruption of the Prepulse Inhibition of the Startle Reflex in Vasopressin V1b Receptor Knockout Mice:<br>Reversal by Antipsychotic Drugs. Neuropsychopharmacology, 2005, 30, 1996-2005.                                                                                                                                                                                        | 5.4               | 46                  |
| 78 | Neuropeptides in Psychiatric Diseases: An Overview with a Particular Focus on Depression and Anxiety Disorders. CNS and Neurological Disorders - Drug Targets, 2006, 5, 135-145.                                                                                                                                                                                                | 1.4               | 46                  |
| 79 | 5-HT1A agonists modulate mouse antipredator defensive behavior differently from the 5-HT2A antagonist pirenperone. Pharmacology Biochemistry and Behavior, 1995, 51, 235-244.                                                                                                                                                                                                   | 2.9               | 45                  |
| 80 | Defensive Responses to Predator Threat in the Rat and Mouse. Current Protocols in Neuroscience, 2005, 30, Unit 8.19.                                                                                                                                                                                                                                                            | 2.6               | 45                  |
| 81 | AVE1625, a cannabinoid CB1 receptor antagonist, as a co-treatment with antipsychotics for schizophrenia: improvement in cognitive function and reduction of antipsychotic-side effects in rodents. Psychopharmacology, 2011, 215, 149-163.                                                                                                                                      | 3.1               | 45                  |
| 82 | CCK receptor antagonists in animal models of anxiety: comparison between exploration tests, conflict procedures and a model based on defensive behaviours. Behavioural Pharmacology, 1997, 8, 549-560.                                                                                                                                                                          | 1.7               | 44                  |
| 83 | The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Scientific Reports, 2016, 6, 35320.                                                                                                                                                                    | 3.3               | 43                  |
| 84 | Contribution of GABAAReceptor Subtypes to the Anxiolytic-Like, Motor, and Discriminative Stimulus<br>Effects of Benzodiazepines: Studies with the Functionally Selective Ligand SL651498<br>[6-Fluoro-9-methyl-2-phenyl-4-(pyrrolidin-1-yl-carbonyl)-2,9-dihydro-1H-pyridol[3,4-b]indol-1-one].<br>Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1118-1125. | 2.5               | 42                  |
| 85 | Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology, 2007, 194, 161-171.                                                                                                                                                                                                                          | 3.1               | 41                  |
| 86 | The Glycine Transporter-1 Inhibitor SSR103800 Displays a Selective and Specific Antipsychotic-like<br>Profile in Normal and Transgenic Mice. Neuropsychopharmacology, 2010, 35, 416-427.                                                                                                                                                                                        | 5.4               | 41                  |
| 87 | Comparison of the pharmacological properties of classical and novel BZ-ω receptor ligands.<br>Behavioural Pharmacology, 1999, 10, 483-495.                                                                                                                                                                                                                                      | 1.7               | 40                  |
| 88 | SSR240600<br>[(R)-2-(1-{2-[4-{2-[3,5-Bis(trifluoromethyl)phenyl]acetyl}-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl}-4-piperidin<br>a Centrally Active Nonpeptide Antagonist of the Tachykinin Neurokinin 1 Receptor: II. Neurochemical<br>and Behavioral Characterization. Journal of Pharmacology and Experimental Therapeutics, 2002, 303,                                    | yl)-2-meth<br>2.5 | nylpropanamid<br>40 |
| 89 | 1180-1188.<br>Antidepressant-Like Effects of the Corticotropin-Releasing Factor 1 Receptor Antagonist, SSR125543,<br>and the Vasopressin 1b Receptor Antagonist, SSR149415, in a DRL-72 s Schedule in the Rat.<br>Neuropsychopharmacology, 2006, 31, 2180-2187.                                                                                                                 | 5.4               | 39                  |
| 90 | SAR110894, a potent histamine H3-receptor antagonist, displays procognitive effects in rodents.<br>Pharmacology Biochemistry and Behavior, 2012, 102, 203-214.                                                                                                                                                                                                                  | 2.9               | 39                  |

| #   | Article                                                                                                                                                                                                                 | IF    | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 91  | Mice Deficient in Cryptochrome 1 (Cry1−/−) Exhibit Resistance to Obesity Induced by a High-Fat<br>Frontiers in Endocrinology, 2014, 5, 49.                                                                              | Diet. | 39        |
| 92  | Behavioral effects of rolipram and structurally related compounds in mice: Behavioral sedation of cAMP phosphodiesterase inhibitors. Pharmacology Biochemistry and Behavior, 1991, 39, 321-323.                         | 2.9   | 38        |
| 93  | Deep brain stimulation in treatment-resistant depression in mice: Comparison with the CRF1<br>antagonist, SSR125543. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 40,<br>213-220.              | 4.8   | 38        |
| 94  | Anxiolytic-like effects of a selective 5-HT1A agonist, S20244, and its enantiomers in mice. NeuroReport, 1992, 3, 84-86.                                                                                                | 1.2   | 37        |
| 95  | Further evidence for differences between non-selective and BZ-1 (ω1) Selective, benzodiazepine receptor<br>ligands in murine models of "state―and "trait―Anxiety. Neuropharmacology, 1996, 35, 1081-1091.               | 4.1   | 37        |
| 96  | Effects of the CRF1 antagonist SSR125543A on aggressive behaviors in hamsters. Pharmacology<br>Biochemistry and Behavior, 2004, 77, 465-469.                                                                            | 2.9   | 36        |
| 97  | m-Chlorophenylpiperazine enhances neophobic and anxious behaviour in mice. NeuroReport, 1991, 2, 627.                                                                                                                   | 1.2   | 35        |
| 98  | Characterization of the profile of neurokinin-2 and neurotensin receptor antagonists in the mouse defense test battery. Neuroscience and Biobehavioral Reviews, 2001, 25, 619-626.                                      | 6.1   | 33        |
| 99  | Limited anxiolytic-like effects of non-benzodiazepine hypnotics in rodents. Journal of<br>Psychopharmacology, 1998, 12, 356-365.                                                                                        | 4.0   | 32        |
| 100 | β-CCT, a selective BZ-ω1 receptor antagonist, blocks the anti-anxiety but not the amnesic action of chlordiazepoxide in mice. Behavioural Pharmacology, 2000, 11, 125-131.                                              | 1.7   | 32        |
| 101 | Long-term impaired memory following predatory stress in mice. Physiology and Behavior, 2006, 87, 45-50.                                                                                                                 | 2.1   | 32        |
| 102 | Behavioural profiles of the reversible monoamine-oxidase-A inhibitors befloxatone and moclobemide<br>in an experimental model for screening anxiolytic and anti-panic drugs. Psychopharmacology, 1997, 131,<br>180-186. | 3.1   | 30        |
| 103 | Anxiolytic and sedative effects of 5-HT1A ligands, 8-OH-DPAT and MDL 73005EF, in mice. NeuroReport, 1990, 1, 267.                                                                                                       | 1.2   | 28        |
| 104 | Discriminative Stimulus Effects of Drugs Acting at GABAA Receptors. Pharmacology Biochemistry and Behavior, 1999, 64, 269-273.                                                                                          | 2.9   | 28        |
| 105 | Is there still a future for neurokinin 3 receptor antagonists as potential drugs for the treatment of psychiatric diseases?. , 2012, 133, 116-123.                                                                      |       | 28        |
| 106 | Implication of β3-adrenoceptors in the antidepressant-like effects of amibegron using Adrb3 knockout mice in the chronic mild stress. Behavioural Brain Research, 2010, 206, 310-312.                                   | 2.2   | 25        |
| 107 | Serenics fluprazine (DU 27716) and eltoprazine (DU 28853) enhance neophobic and emotional behaviour<br>in mice. Psychopharmacology, 1990, 102, 498-502.                                                                 | 3.1   | 24        |
| 108 | Impaired memory following predatory stress in mice is improved by fluoxetine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2004, 28, 123-128.                                                        | 4.8   | 24        |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The corticotropin-releasing factor 1 receptor antagonist, SSR125543, and the vasopressin 1b receptor antagonist, SSR149415, prevent stress-induced cognitive impairment in mice. Pharmacology Biochemistry and Behavior, 2011, 98, 425-431.                             | 2.9 | 24        |
| 110 | Phencyclidine decreases tickling-induced 50-kHz ultrasound vocalizations in juvenile rats.<br>Behavioural Pharmacology, 2013, 24, 543-551.                                                                                                                              | 1.7 | 24        |
| 111 | The CRF1 receptor antagonist SSR125543 attenuates long-term cognitive deficit induced by acute inescapable stress in mice, independently from the hypothalamic pituitary adrenal axis. Pharmacology Biochemistry and Behavior, 2012, 102, 415-422.                      | 2.9 | 21        |
| 112 | The CRF1 receptor antagonist SSR125543 prevents stress-induced cognitive deficit associated with hippocampal dysfunction: Comparison with paroxetine and d-cycloserine. Psychopharmacology, 2013, 228, 97-107.                                                          | 3.1 | 19        |
| 113 | Saredutant, an NK2 receptor antagonist, has both antidepressant-like effects and synergizes with<br>desipramine in an animal model of depression. Pharmacology Biochemistry and Behavior, 2010, 96,<br>206-210.                                                         | 2.9 | 18        |
| 114 | Behavioural effects of selective A2 adenosine receptor antagonists, CGS 21197 and CGS 22706, in mice.<br>NeuroReport, 1991, 2, 139-140.                                                                                                                                 | 1.2 | 17        |
| 115 | Differences in Anxiolytic-Like Profile of Two Novel Nonbenzodiazepine BZ (Ï–) Receptor Agonists on<br>Defensive Behaviors of Mice. Pharmacology Biochemistry and Behavior, 1999, 62, 689-694.                                                                           | 2.9 | 17        |
| 116 | Further evidence for the sleep-promoting effects of 5-HT2A receptor antagonists and demonstration of synergistic effects with the hypnotic, zolpidem in rats. Neuropharmacology, 2013, 70, 19-26.                                                                       | 4.1 | 17        |
| 117 | Preclinical profile of the mixed 5-HT1A/5-HT2A receptor antagonist S 21357. Pharmacology Biochemistry and Behavior, 1996, 54, 509-516.                                                                                                                                  | 2.9 | 16        |
| 118 | Awakening properties of newly discovered highly selective H3 receptor antagonists in rats.<br>Behavioural Brain Research, 2012, 232, 416-420.                                                                                                                           | 2.2 | 16        |
| 119 | Evidence that tolerance to the anxiogenic-like effects of mCPP does not involve alteration in the function of 5-HT2C receptors in the rat choroid plexus. Behavioural Pharmacology, 1994, 5, 642-646.                                                                   | 1.7 | 15        |
| 120 | The neurokinin NK2 antagonist, saredutant, ameliorates stress-induced conditions without impairing cognition. Pharmacology Biochemistry and Behavior, 2011, 98, 405-411.                                                                                                | 2.9 | 14        |
| 121 | The CRF1 receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: Comparison with paroxetine and d-cycloserine. Behavioural Brain Research, 2015, 279, 41-46.                                                    | 2.2 | 12        |
| 122 | Study of the modulatory activity of bz (ω) receptor ligands on defensive behaviors in mice: Evaluation<br>of the importance of intrinsic efficacy and receptor subtype selectivity. Progress in<br>Neuro-Psychopharmacology and Biological Psychiatry, 1999, 23, 81-98. | 4.8 | 11        |
| 123 | SSR181507, a dopamine D2 receptor and 5-HT1A receptor ligand: Evidence for mixed anxiolytic- and antidepressant-like activities. Pharmacology Biochemistry and Behavior, 2011, 97, 428-435.                                                                             | 2.9 | 8         |
| 124 | Neuropeptide Receptor Ligands for the Treatment of Schizophrenia: Focus on Neurotensin and<br>Tachykinins. Current Pharmaceutical Design, 2015, 21, 3807-3812.                                                                                                          | 1.9 | 8         |
| 125 | Creativity in large pharmaceutical research organizations: unleash the hungry drug hunter. British<br>Journal of Pharmacology, 2017, 174, 2152-2153.                                                                                                                    | 5.4 | 6         |
| 126 | The Mouse Defense Test Battery: An experimental model of different emotional states , 0, , 75-85.                                                                                                                                                                       |     | 6         |

126 The Mouse Defense Test Battery: An experimental model of different emotional states.. , 0, , 75-85.

| #   | Article                                                                                                                                                                                                                | IF              | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 127 | Effects of intra-hippocampal injections of the NK2 receptor antagonist saredutant on the elevated plus maze, and the mouse defense test battery. Neuroscience Letters, 2010, 485, 241-245.                             | 2.1             | 5            |
| 128 | Discovery of a potent, selective, and orally bioavailable histamine H3 receptor antagonist SAR110068<br>for the treatment of sleep–wake disorders. Bioorganic and Medicinal Chemistry Letters, 2013, 23,<br>6141-6145. | 2.2             | 5            |
| 129 | The Mouse Defense Test Battery: A Model Measuring Different Facets of Anxiety-Related Behaviors.<br>Neuromethods, 2011, , 97-106.                                                                                      | 0.3             | 5            |
| 130 | Chapter 1.1 Introduction to the handbook on fear and anxiety. Handbook of Behavioral Neuroscience, 2008, 17, 3-7.                                                                                                      | 0.7             | 4            |
| 131 | Response to Roesler et al.: Neuropeptides and stress-related disorders – multiple targets and converging concepts. Trends in Pharmacological Sciences, 2004, 25, 242-243.                                              | 8.7             | 3            |
| 132 | Long-lasting memory abnormalities following exposure to the mouse defense test battery: An animal model of PTSD. Physiology and Behavior, 2015, 146, 67-72.                                                            | 2.1             | 3            |
| 133 | Tachykinins. , 2010, , 1301-1303.                                                                                                                                                                                      |                 | 3            |
| 134 | Prolactin similar to ectopic pituitary isograft restores responsiveness in Snell dwarf mice.<br>NeuroReport, 1992, 3, 210.                                                                                             | 1.2             | 2            |
| 135 | CRF1 receptor antagonists do not reverse pharmacological disruption of prepulse inhibition in rodents. Psychopharmacology, 2014, 231, 1289-1303.                                                                       | 3.1             | 2            |
| 136 | Nonpeptide vasopressin V1b receptor antagonists. Handbook of Behavioral Neuroscience, 2005, 15, 409-421.                                                                                                               | 0.0             | 1            |
| 137 | Editorial [Hot Topic: Neuropeptide Systems as Novel Targets for Psychiatric Disorders (Guest Editor:) Tj ETQq1 1                                                                                                       | 0.784314<br>1.4 | rgBT /Overla |
| 138 | Chapter 4.6 Genetic factors underlying anxiety-behavior: A meta-analysis of rodent studies involving<br>targeted mutations of neurotransmission genes. Handbook of Behavioral Neuroscience, 2008, 17,<br>325-354.      | 0.7             | 1            |
| 139 | Pharmacology, Biochemistry and Behavior: The 2015 Transition. Pharmacology Biochemistry and Behavior, 2015, 131, iii.                                                                                                  | 2.9             | 1            |
| 140 | Subtype-selective benzodiazepine receptor ligands. , 2000, , 77-94.                                                                                                                                                    |                 | 1            |
| 141 | Tachykinins. , 2014, , 1-4.                                                                                                                                                                                            |                 | 0            |