Isabel Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MolKin v2.0: A Computer Program for Genetic Analysis of Populations Using Molecular Coancestry Information. Journal of Heredity, 2005, 96, 718-721.	1.0	166
2	Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. Journal of Animal Breeding and Genetics, 2003, 120, 95-105.	0.8	136
3	Carcass and meat quality of light lambs using principal component analysis. Meat Science, 2004, 67, 595-605.	2.7	83
4	Genetic relationships and admixture among sheep breeds from Northern Spain assessed using microsatellites1. Journal of Animal Science, 2004, 82, 2246-2252.	0.2	75
5	Genetic relationships between calving date, calving interval, age at first calving and type traits in beef cattle. Livestock Science, 2002, 78, 215-222.	1.2	66
6	Multivariate characterization of morphological traits in Burkina Faso sheep. Small Ruminant Research, 2008, 80, 62-67.	0.6	64
7	The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends in Food Science and Technology, 2001, 12, 370-381.	7.8	58
8	The Origins of Iberian Horses Assessed via Mitochondrial DNA. Journal of Heredity, 2005, 96, 663-669.	1.0	52
9	Yâ€specific microsatellites reveal an African subfamily in taurine (<i>Bos taurus</i>) cattle. Animal Genetics, 2010, 41, 232-241.	0.6	51
10	Multiple paternal origins of domestic cattle revealed by Y-specific interspersed multilocus microsatellites. Heredity, 2010, 105, 511-519.	1.2	50
11	Differences in the expression of the <i>ASIP</i> gene are involved in the recessive black coat colour pattern in sheep: evidence from the rare Xalda sheep breed. Animal Genetics, 2008, 39, 290-293.	0.6	48
12	Testing the usefulness of the molecular coancestry information to assess genetic relationships in livestock using a set of Spanish sheep breeds1. Journal of Animal Science, 2005, 83, 737-744.	0.2	45
13	The coding sequence of the ASIP gene is identical in nine wild-type coloured cattle breeds. Journal of Animal Breeding and Genetics, 2005, 122, 357-360.	0.8	43
14	Genetic relationships among calving ease, calving interval, birth weight, and weaning weight in the Asturiana de los Valles beef cattle breed1. Journal of Animal Science, 2007, 85, 69-75.	0.2	39
15	Genetic variability and differentiation in Spanish roe deer (Capreolus capreolus): A phylogeographic reassessment within the European frameworkâ~†. Molecular Phylogenetics and Evolution, 2007, 42, 47-61.	1.2	39
16	Relationship between genealogical and microsatellite information characterizing losses of genetic variability: Empirical evidence from the rare Xalda sheep breed. Livestock Science, 2008, 115, 80-88.	0.6	38
17	Genetic characterisation of Burkina Faso goats using microsatellite polymorphism. Livestock Science, 2009, 123, 322-328.	0.6	37
18	Genetic variability in the endangered Asturcón pony assessed using genealogical and molecular information. Livestock Science, 2007, 107, 162-169.	0.6	36

#	Article	IF	CITATIONS
19	Microsatellite Analysis Characterizes Burkina Faso as a Genetic Contact Zone Between Sahelian and Djallonké Sheep. Animal Biotechnology, 2009, 20, 47-57.	0.7	36
20	9-cis-retinoic acid during in vitro maturation improves development of the bovine oocyte and increases midkine but not IGF-I expression in cumulus-granulosa cells. Molecular Reproduction and Development, 2003, 66, 247-255.	1.0	34
21	Genetic relationships between Spanish Assaf (Assaf.E) and Spanish native dairy sheep breeds. Small Ruminant Research, 2008, 80, 39-44.	0.6	31
22	Genetic analysis of calf survival at different preweaning ages in beef cattle. Livestock Science, 2003, 83, 13-20.	1.2	30
23	Using artificial intelligence to design and implement a morphological assessment system in beef cattle. Animal Science, 2001, 73, 49-60.	1.3	29
24	Multivariate analyses on morphological traits of goats in Burkina Faso. Archives Animal Breeding, 2008, 51, 588-600.	0.5	28
25	The influences of carcass weight and depot on the fatty acid composition of fats of suckling Manchego lambs. Meat Science, 2005, 70, 373-379.	2.7	27
26	Genetic analysis of days open in beef cattle. Livestock Science, 2005, 93, 283-289.	1.2	26
27	Body composition in relation to slaughter weight and gender in suckling lambs. Small Ruminant Research, 2006, 64, 126-132.	0.6	23
28	Infrared spectroscopic analysis of mononuclear leukocytes in peripheral blood from Alzheimer's disease patients. Analytical and Bioanalytical Chemistry, 2012, 402, 2015-2021.	1.9	23
29	Legacies of domestication, trade and herder mobility shape extant male zebu cattle diversity in South Asia and Africa. Scientific Reports, 2018, 8, 18027.	1.6	23
30	Artificial intelligence techniques point out differences in classification performance between light and standard bovine carcasses. Meat Science, 2003, 64, 249-258.	2.7	21
31	Genetic relationships of the Cuban hair sheep inferred from microsatellite polymorphism. Small Ruminant Research, 2012, 104, 89-93.	0.6	21
32	Retinoids during the in vitro transition from bovine morula to blastocyst. Human Reproduction, 2006, 21, 2149-2157.	0.4	20
33	Mitochondrial <scp>DNA</scp> and <scp>Y</scp> â€chromosome diversity in <scp>E</scp> ast <scp>A</scp> driatic sheep. Animal Genetics, 2013, 44, 184-192.	0.6	20
34	Ascertaining gene flow patterns in livestock populations of developing countries: a case study in Burkina Faso goat. BMC Genetics, 2012, 13, 35.	2.7	19
35	Mitochondrial analysis sheds light on the origin of hair sheep. Animal Genetics, 2013, 44, 344-347.	0.6	18
36	Assessing losses of genetic variability in the endangered MallorquÃ-horse. Czech Journal of Animal Science, 2010, 55, 456-462.	0.5	17

#	Article	IF	CITATIONS
37	Lack of mitochondrial <scp>DNA</scp> structure in <scp>B</scp> alkan donkey is consistent with a quick spread of the species after domestication. Animal Genetics, 2014, 45, 144-147.	0.6	17
38	Assessing introgression of Sahelian zebu genes into native Bos taurus breeds in Burkina Faso. Molecular Biology Reports, 2014, 41, 3745-3754.	1.0	17
39	Geographical assessment of body measurements and qualitative traits in West African cattle. Tropical Animal Health and Production, 2015, 47, 1505-1513.	0.5	17
40	Factors affecting actual weaning weight, preweaning average daily gain and relative growth rate in Asturiana de los Valles beef cattle breed. Archives Animal Breeding, 2003, 46, 235-243.	0.5	17
41	Genetic diversity loss due to selection for scrapie resistance in the rare Spanish Xalda sheep breed. Livestock Science, 2007, 111, 204-212.	0.6	16
42	Analysis of mitochondrial DNA diversity in Burkina Faso populations confirms the maternal genetic homogeneity of the West African goat. Animal Genetics, 2009, 40, 344-347.	0.6	15
43	Resistance to gastrointestinal parasite infection in Djallonké sheep. Animal, 2017, 11, 1354-1362.	1.3	15
44	Genomic scan of selective sweeps in Djallonké (West African Dwarf) sheep shed light on adaptation to harsh environments. Scientific Reports, 2020, 10, 2824.	1.6	15
45	Sire×contemporary group interactions for birth weight and preweaning growth traits in the Asturiana de los Valles beef cattle breed. Livestock Science, 2006, 99, 61-68.	0.6	14
46	Quantifying diversity losses due to selection for scrapie resistance in three endangered Spanish sheep breeds using microsatellite information. Preventive Veterinary Medicine, 2009, 91, 172-178.	0.7	14
47	African Cattle do not Carry Unique Mutations on the Exon 9 of the ARHGAP15 Gene. Animal Biotechnology, 2016, 27, 9-12.	0.7	14
48	Multivariate characterization of morphological traits in West African cattle sires. Archives Animal Breeding, 2016, 59, 337-344.	0.5	14
49	Usefulness of molecular-based methods for estimating effective population size in livestock assessed using data from the endangered black-coated AsturcA³n pony1. Journal of Animal Science, 2011, 89, 1251-1259.	0.2	13
50	Assessing priorities for conservation in Tuscan cattle breeds using microsatellites. Animal, 2012, 6, 203-211.	1.3	12
51	Usefulness of running animal models in absence of pedigrees: Estimation of genetic parameters for gastrointestinal parasite resistance traits in Djallonké sheep of Burkina Faso. Small Ruminant Research, 2018, 160, 81-88.	0.6	12
52	Identification of genomic regions and candidate genes of functional importance for gastrointestinal parasite resistance traits in Djallonké sheep of Burkina Faso. Archives Animal Breeding, 2019, 62, 313-323.	0.5	12
53	Use of carcass weight to classify Manchego sucking lambs and its relation to carcass and meat quality. Animal Science, 2005, 80, 61-69.	1.3	11
54	Technical note: A novel method for routine genotyping of horse coat color gene polymorphisms1. Journal of Animal Science, 2008, 86, 1291-1295.	0.2	11

#	Article	IF	CITATIONS
55	Lack of haplotype structuring for two candidate genes for trypanotolerance in cattle. Journal of Animal Breeding and Genetics, 2016, 133, 105-114.	0.8	11
56	A sexing protocol for wild ruminants based on PCR amplification of amelogenin genes AMELX and AMELY (short communication). Archives Animal Breeding, 2007, 50, 442-446.	0.5	11
57	Functional characterization of Copy Number Variations regions in Djallonké sheep. Journal of Animal Breeding and Genetics, 2021, 138, 600-612.	0.8	10
58	Founder and present maternal diversity in two endangered Spanish horse breeds assessed via pedigree and mitochondrial DNA information. Journal of Animal Breeding and Genetics, 2012, 129, 271-279.	0.8	9
59	Genealogical analysis of the Gochu Asturcelta pig breed: insights for conservation. Czech Journal of Animal Science, 2016, 61, 140-149.	0.5	9
60	Genetic characterisation of the endangered Gochu Asturcelta pig breed using microsatellite and mitochondrial markers: Insights for the composition of the Iberian native pig stock. Livestock Science, 2016, 187, 162-167.	0.6	9
61	Differential distribution of Y-chromosome haplotypes in Swiss and Southern European goat breeds. Scientific Reports, 2017, 7, 16161.	1.6	9
62	Population Structure Assessed Using Microsatellite and SNP Data: An Empirical Comparison in West African Cattle. Animals, 2021, 11, 151.	1.0	8
63	Assessing diversity losses due to selection for coat colour in the endangered bay-Asturcón pony using microsatellites. Livestock Science, 2011, 135, 199-204.	0.6	7
64	Lack of specific alleles for the bovine chemokine (C-X-C) receptor type 4 (CXCR4) gene in West African cattle questions its role as a candidate for trypanotolerance. Infection, Genetics and Evolution, 2016, 42, 30-33.	1.0	7
65	Assessing performance of singleâ€sample molecular genetic methods to estimate effective population size: empirical evidence from the endangered <i>Gochu Asturcelta</i> pig breed. Ecology and Evolution, 2016, 6, 4971-4980.	0.8	7
66	Differences in genetic structure assessed using Yâ€chromosome and mitochondrial <scp>DNA</scp> markers do not shape the contributions to diversity in African sires. Journal of Animal Breeding and Genetics, 2017, 134, 393-404.	0.8	7
67	Ancient Homozygosity Segments in West African Djallonké Sheep Inform on the Genomic Impact of Livestock Adaptation to the Environment. Animals, 2020, 10, 1178.	1.0	7
68	Multiple paternity in domestic pigs under equally probable natural matings – a case study in the endangered Gochu Asturcelta pig breed. Archives Animal Breeding, 2015, 58, 217-220.	0.5	7
69	Female segregation patterns of the putative Yâ€chromosomeâ€specific microsatellite markers <i>INRA124</i> and <i>INRA126</i> do not support their use for cattle population studies. Animal Genetics, 2009, 40, 560-564.	0.6	6
70	Microsatellite analysis of the Rousse de Maradi (Red Sokoto) goat of Burkina Faso. Small Ruminant Research, 2012, 105, 83-88.	0.6	6
71	Morphological assessment of Niger Kuri cattle using multivariate methods. South African Journal of Animal Sciences, 2017, 47, 505.	0.2	6
72	Ancient autozygous segments subject to positive selection suggest adaptive immune responses in West African cattle. Gene, 2021, 803, 145899.	1.0	6

#	Article	IF	CITATIONS
73	Morphological assessment of the Zebu Bororo (Wodaabé) cattle of Niger in the West African zebu framework. Archives Animal Breeding, 2017, 60, 363-371.	0.5	6
74	Prion protein gene polymorphism in four West African sheep populations. Tropical Animal Health and Production, 2012, 44, 1469-1472.	0.5	5
75	Genetic structure of the bovine Yâ€specific microsatellite <i>UMN0103</i> reflects the genetic history of the species. Animal Genetics, 2011, 42, 566-567.	0.6	4
76	Testing a continuous variation in preweaning expression of muscular hypertrophy in beef cattle using field data. Archives Animal Breeding, 2002, 45, 139-149.	0.5	3
77	Short communication. Mitochondrial DNA diversity of the founder populations of the Asturcón pony. Spanish Journal of Agricultural Research, 2013, 11, 702.	0.3	1