
Seok-Jin Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292568/publications.pdf Version: 2024-02-01

SEOK-LIN KIM

#	Article	IF	CITATIONS
1	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	15.6	102
2	Solution-Processable Semiconducting Conjugated Planar Network. ACS Applied Materials & Interfaces, 2022, 14, 14588-14595.	4.0	0
3	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
4	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). Advanced Materials, 2021, 33, 2170063.	11.1	0
5	Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 2, 100502.	2.8	3
6	Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004707.	11.1	16
7	Revealing Isolated Mâ^'N ₃ C ₁ Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 23678-23683.	7.2	64
8	Revealing Isolated Mâ N 3 C 1 Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie, 2020, 132, 23886-23891.	1.6	9
9	Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nature Communications, 2020, 11, 2209.	5.8	281
10	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nature Communications, 2020, 11, 1278.	5.8	340
11	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	4.7	9
12	Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. Nano Energy, 2019, 66, 104112.	8.2	13
13	Identifying the structure of Zn-N2 active sites and structural activation. Nature Communications, 2019, 10, 2623.	5.8	79
14	Oxidative Dehydrogenation of Ethylbenzene into Styrene by Fe-Graphitic Catalysts. ACS Nano, 2019, 13, 5893-5899.	7.3	26
15	Lowâ€Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. Advanced Materials, 2019, 31, e1807267.	11.1	22
16	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie, 2018, 130, 3473-3478.	1.6	6
17	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420.	7.2	40
18	Defect-Free Encapsulation of Fe ⁰ in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2018, 140, 1737-1742.	6.6	124

Seok-Jin Kim

#	Article	IF	CITATIONS
19	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater.) Tj ETQq1 1 0.784	43 141 rgBT	/Qverlock 1
20	Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1805606.	11.1	98
21	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
22	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10, 1268-1281.	5.8	43
23	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nature Nanotechnology, 2017, 12, 441-446.	15.6	1,271
24	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. Nature Communications, 2017, 8, 1599.	5.8	12
25	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
26	Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. 2D Materials, 2017, 4, 014002.	2.0	15
27	Cobalt Oxide Encapsulated in C ₂ N- <i>h</i> 2D Network Polymer as a Catalyst for Hydrogen Evolution. Chemistry of Materials, 2015, 27, 4860-4864.	3.2	131