Seok-Jin Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5292568/seok-jin-kim-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 2,080 14 27 g-index

27 2,705 17.2 5.06 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
26	Abrading bulk metal into single atoms <i>Nature Nanotechnology</i> , 2022 ,	28.7	12
25	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). <i>Advanced Materials</i> , 2021 , 33, 2170063	24	
24	Mechanochemistry for ammonia synthesis under mild conditions. <i>Nature Nanotechnology</i> , 2021 , 16, 325	-38.9	51
23	Fused aromatic networks with the different spatial arrangement of structural units. <i>Cell Reports Physical Science</i> , 2021 , 100502	6.1	О
22	Fused Aromatic Network with Exceptionally High Carrier Mobility. <i>Advanced Materials</i> , 2021 , 33, e20047	'07	6
21	Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to HO. <i>Nature Communications</i> , 2020 , 11, 2209	17.4	107
20	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. <i>Nature Communications</i> , 2020 , 11, 1278	17.4	156
19	Revealing Isolated M-N C Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23678-23683	16.4	30
18	Revealing Isolated MN3C1 Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 23886-23891	3.6	8
17	Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. <i>Nano Energy</i> , 2019 , 66, 104112	17.1	7
16	Identifying the structure of Zn-N active sites and structural activation. <i>Nature Communications</i> , 2019 , 10, 2623	17.4	50
15	Oxidative Dehydrogenation of Ethylbenzene into Styrene by Fe-Graphitic Catalysts. <i>ACS Nano</i> , 2019 , 13, 5893-5899	16.7	12
14	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. <i>Science Advances</i> , 2019 , 5, eaax8275	14.3	8
13	Low-Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. <i>Advanced Materials</i> , 2019 , 31, e1807267	24	16
12	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. <i>Angewandte Chemie</i> , 2018 , 130, 3473-3478	3.6	4
11	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3415-3420	16.4	34
10	Defect-Free Encapsulation of Fe in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1737-1742	16.4	103

LIST OF PUBLICATIONS

9	Boosting oxygen reduction catalysis with abundant copper single atom active sites. <i>Energy and Environmental Science</i> , 2018 , 11, 2263-2269	35.4	301
8	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater. 52/2018). <i>Advanced Materials</i> , 2018 , 30, 1870401	24	2
7	Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2018 , 30, e1805606	24	69
6	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. <i>Nano Research</i> , 2017 , 10, 1268-1281	10	36
5	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. <i>Nature Nanotechnology</i> , 2017 , 12, 441-446	28.7	857
4	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. <i>Nature Communications</i> , 2017 , 8, 1599	17.4	9
3	Macroporous Inverse Opal-like MoC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. <i>ACS Nano</i> , 2017 , 11, 7527-7533	16.7	84
2	Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. <i>2D Materials</i> , 2017 , 4, 014002	5.9	13
1	Cobalt Oxide Encapsulated in C2N-h2D Network Polymer as a Catalyst for Hydrogen Evolution. <i>Chemistry of Materials</i> , 2015 , 27, 4860-4864	9.6	105