Choogon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292544/publications.pdf

Version: 2024-02-01

22 papers 4,617 citations

394421 19 h-index 713466 21 g-index

24 all docs

24 docs citations

times ranked

24

5196 citing authors

#	Article	IF	CITATIONS
1	Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals. Science, 2012, 338, 349-354.	12.6	1,194
2	Posttranslational Mechanisms Regulate the Mammalian Circadian Clock. Cell, 2001, 107, 855-867.	28.9	1,071
3	SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins. Science, 2007, 316, 900-904.	12.6	445
4	Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis. Cancer Cell, 2016, 30, 909-924.	16.8	360
5	Rhythmic PER Abundance Defines a Critical Nodal Point for Negative Feedback within the Circadian Clock Mechanism. Molecular Cell, 2009, 36, 417-430.	9.7	207
6	Circadian Dysfunction Induces Leptin Resistance in Mice. Cell Metabolism, 2015, 22, 448-459.	16.2	198
7	The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16451-16456.	7.1	158
8	Essential roles of CKIÎ $^{\prime}$ and CKIÎ μ in the mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21359-21364.	7.1	156
9	mTOR signaling regulates central and peripheral circadian clock function. PLoS Genetics, 2018, 14, e1007369.	3.5	154
10	Direct Association between Mouse PERIOD and CKIÎ μ Is Critical for a Functioning Circadian Clock. Molecular and Cellular Biology, 2004, 24, 584-594.	2.3	143
11	miRNAs Are Required for Generating a Time Delay Critical for the Circadian Oscillator. Current Biology, 2013, 23, 1959-1968.	3.9	105
12	Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture. Molecular Cell, 2016, 64, 900-912.	9.7	93
13	Light-regulated translational control of circadian behavior by eIF4E phosphorylation. Nature Neuroscience, 2015, 18, 855-862.	14.8	71
14	<i>>Period2</i> 3′-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8855-E8864.	7.1	71
15	Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein. Current Biology, 2017, 27, 3454-3467.e8.	3.9	44
16	A tunable artificial circadian clock in clock-defective mice. Nature Communications, 2015, 6, 8587.	12.8	43
17	Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28402-28411.	7.1	33
18	Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature rhythmicity. Nature Communications, 2019, 10, 2563.	12.8	25

CHOOGON LEE

#	Article	IF	CITATION
19	Casein Kinase 1δ-dependent Wee1 Protein Degradation. Journal of Biological Chemistry, 2014, 289, 18893-18903.	3.4	22
20	Streamlined procedure for gene knockouts using all-in-one adenoviral CRISPR-Cas9. Scientific Reports, 2019, 9, 277.	3.3	19
21	CRY arrests Cop1 to regulate circadian rhythms in mammals. Cell Division, 2019, 14, 12.	2.4	1
22	PERpetual motion of the circadian negative feedback loop. Cell Cycle, 2010, 9, 853-854.	2.6	0