Cong Truc Huynh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications. Macromolecules, 2011, 44, 6629-6636.	4.8	221

2 Sustained delivery of doxorubicin using biodegradable pH/temperature-sensitive poly(ethylene) Tj ETQq0 0 0 rgBT /2.7 Tf 50 70

3	pH-sensitive and bioadhesive poly(β-amino ester)–poly(ethylene glycol)–poly(β-amino ester) triblock copolymer hydrogels with potential for drug delivery in oral mucosal surfaces. Polymer, 2009, 50, 5205-5210.	3.8	68
4	Controlled release of human growth hormone from a biodegradable pH/temperature-sensitive hydrogel system. Soft Matter, 2011, 7, 8984.	2.7	60
5	Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomaterialia, 2011, 7, 3123-3130.	8.3	59
6	Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy. Acta Biomaterialia, 2016, 41, 253-263.	8.3	55
7	Biodegradable oligo(amidoamine/β-amino ester) hydrogels for controlled insulin delivery. Soft Matter, 2011, 7, 2994.	2.7	45
8	4D biofabrication via instantly generated graded hydrogel scaffolds. Bioactive Materials, 2022, 7, 324-332.	15.6	45
9	Photocleavable Hydrogels for Lightâ€Triggered siRNA Release. Advanced Healthcare Materials, 2016, 5, 305-310.	7.6	44
10	Dually cationic and anionic pH/temperature-sensitive injectable hydrogels and potential application as a protein carrier. Chemical Communications, 2012, 48, 10951.	4.1	38
11	Thiol-Epoxy "Click―Chemistry to Engineer Cytocompatible PEC-Based Hydrogel for siRNA-Mediated Osteogenesis of hMSCs. ACS Applied Materials & Interfaces, 2018, 10, 25936-25942.	8.0	38
12	pH/temperature-sensitive 4-arm poly(ethylene glycol)-poly(amino urethane) copolymer hydrogels. Polymer, 2010, 51, 3843-3850.	3.8	36
13	Light-triggered RNA release and induction of hMSC osteogenesis via photodegradable, dual-crosslinked hydrogels. Nanomedicine, 2016, 11, 1535-1550.	3.3	35
14	Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer, 2011, 52, 3304-3310.	3.8	29
15	A novel sulfamethazine-based pH-sensitive copolymer for injectable radiopaque embolic hydrogels with potential application in hepatocellular carcinoma therapy. Polymer Chemistry, 2016, 7, 5805-5818.	3.9	29
16	Biodegradable star-shaped poly(ethylene glycol)-poly(β-amino ester) cationic pH/temperature-sensitive copolymer hydrogels. Colloid and Polymer Science, 2011, 289, 301-308.	2.1	27
17	Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier. Polymer, 2012, 53, 4069-4075.	3.8	27
18	Covalently tethering siRNA to hydrogels for localized, controlled release and gene silencing. Science Advances, 2019, 5, eaax0801.	10.3	27

Cong Truc Huynh

#	Article	IF	CITATIONS
19	Synthesis, Characteristics and Potential Application of Poly(β-Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1091-1106.	3.5	26
20	Cytocompatible Catalyst-Free Photodegradable Hydrogels for Light-Mediated RNA Release To Induce hMSC Osteogenesis. ACS Biomaterials Science and Engineering, 2017, 3, 2011-2023.	5.2	26
21	Biodegradable pH- and temperature-sensitive multiblock copolymer hydrogels based on poly(amino-ester urethane)s. Macromolecular Research, 2010, 18, 974-980.	2.4	24
22	Photocrosslinkable, biodegradable hydrogels with controlled cell adhesivity for prolonged siRNA delivery to hMSCs to enhance their osteogenic differentiation. Journal of Materials Chemistry B, 2017, 5, 485-495.	5.8	22
23	Intraarterial gelation of injectable cationic pH/temperature-sensitive radiopaque embolic hydrogels in a rabbit hepatic tumor model and their potential application for liver cancer treatment. RSC Advances, 2016, 6, 47687-47697.	3.6	21
24	Hydrogel microspheres for spatiotemporally controlled delivery of RNA and silencing gene expression within scaffold-free tissue engineered constructs. Acta Biomaterialia, 2021, 124, 315-326.	8.3	21
25	Controlling the properties of poly(amino ester urethane)–poly(ethylene glycol)–poly(amino ester) Tj ETQq1 1 290, 1077-1086.	. 0.78431 2.1	4 rgBT /Ove 20
26	Picolyamine based pH/temperature sensitive hydrogels. Macromolecular Research, 2010, 18, 589-595.	2.4	14
27	pH- and temperature-sensitive PCL-grafted poly(β-amino ester)-poly(ethylene glycol)-poly(β-amino ester) copolymer hydrogels. Macromolecular Research, 2010, 18, 1096-1102.	2.4	14
28	pH‧ensitive Pentablock Copolymer Nanocapsules as Nontoxic and Efficient Gene Carriers. Macromolecular Bioscience, 2011, 11, 789-796.	4.1	10
29	Controlled Release. , 2014, , 1-12.		3