Helen L Maddock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292356/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Myocardial Fatigue: a Mechano-energetic Concept in Heart Failure. Current Cardiology Reports, 2022, 24, 711-730.	1.3	8
2	Metformin Protects Against Sunitinib-induced Cardiotoxicity: Investigating the Role of AMPK. Journal of Cardiovascular Pharmacology, 2022, 79, 799-807.	0.8	2
3	Cardiac stunning during haemodialysis: the therapeutic effect of intra-dialytic exercise. CKJ: Clinical Kidney Journal, 2021, 14, 1335-1344.	1.4	21
4	Anti-cancer Therapy Leads to Increased Cardiovascular Susceptibility to COVID-19. Frontiers in Cardiovascular Medicine, 2021, 8, 634291.	1.1	6
5	Improved screening of the cardiovascular safety of COVID-19 anti-viral compounds. Journal of Pharmacological and Toxicological Methods, 2021, 111, 107047.	0.3	0
6	Development of predictive inotropy in silico cardiac safety assay for drug candidate screening. Journal of Pharmacological and Toxicological Methods, 2021, 111, 107046.	0.3	0
7	Primary cardiomyocyte work-loop assay to predict inotropic drug effects of checkpoint kinase inhibitors. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106758.	0.3	0
8	An in vitro platform using the human and rat primary cardiomyocyte work loop assay to screen for drug-induced effects on cardiac contractility. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106759.	0.3	0
9	The cardiac work-loop technique: An in vitro model for identifying and profiling drug-induced changes in inotropy using rat papillary muscles. Scientific Reports, 2020, 10, 5258.	1.6	7
10	Ageing alters the severity of Sunitinib-induced cardiotoxicity: Investigating the mitogen activated kinase kinase 7 pathway association. Toxicology, 2019, 411, 49-59.	2.0	4
11	Involvement of mitogen activated kinase kinase 7 intracellular signalling pathway in Sunitinib-induced cardiotoxicity. Toxicology, 2018, 394, 72-83.	2.0	11
12	P37â€The assessment of the cardioprotective properties of metformin during sunitinib-induced cytotoxicity. , 2018, , .		0
13	Development of an in vitro platform using the human primary cardiomyocyte work loop assay to screen for drug-induced effects on cardiac contractility. Journal of Pharmacological and Toxicological Methods, 2018, 93, 127.	0.3	0
14	Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. European Journal of Pharmacology, 2017, 814, 95-105.	1.7	18
15	Predictivity of in vitro non-clinical cardiac contractility assays for inotropic effects in humans — A literature search. Journal of Pharmacological and Toxicological Methods, 2015, 75, 62-69.	0.3	18
16	Molecular basis of cancer-therapy-induced cardiotoxicity: introducing microRNA biomarkers for early assessment of subclinical myocardial injury. Clinical Science, 2014, 126, 377-400.	1.8	40
17	Ipratropium Bromide-Mediated Myocardial Injury in In Vitro Models of Myocardial Ischaemia/Reperfusion. Toxicological Sciences, 2014, 138, 457-467.	1.4	8
18	Caspase Inhibition Via A3 Adenosine Receptors: A New Cardioprotective Mechanism Against Myocardial Infarction. Cardiovascular Drugs and Therapy, 2014, 28, 19-32.	1.3	28

Helen L Maddock

#	Article	IF	CITATIONS
19	Investigation into the cardiotoxic effects of doxorubicin on contractile function and the protection afforded by cyclosporin A using the work-loop assay. Toxicology in Vitro, 2014, 28, 722-731.	1.1	10
20	Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore. Toxicology and Applied Pharmacology, 2013, 268, 149-156.	1.3	48
21	Attenuation of Doxorubicin-Induced Cardiotoxicity by mdivi-1: A Mitochondrial Division/Mitophagy Inhibitor. PLoS ONE, 2013, 8, e77713.	1.1	97
22	Paradigm shifts in cardioprotection research: the importance of the MPTP as a therapeutic target: AUTHORS' RETROSPECTIVE. Cardiovascular Research, 2012, 96, 160-164.	1.8	0
23	Effects of hydrogen sulphide on the isolated perfused rat heart. Sultan Qaboos University Medical Journal, 2011, 11, 236-44.	0.3	4
24	Effects of adenosine receptor agonists on guinea-pig isolated working hearts and the role of endothelium and NO. Journal of Pharmacy and Pharmacology, 2010, 54, 859-867.	1.2	17
25	Differences between the Vasorelaxant Activity of Adenosine-receptor Agonists on Guinea-pig Isolated Aorta Precontracted with Noradrenaline or Phenylephrine. Journal of Pharmacy and Pharmacology, 2010, 51, 1183-1190.	1.2	2
26	Caspase inhibitors induce PI3 kinase mediated myocardial protection during early reperfusion. Journal of Molecular and Cellular Cardiology, 2008, 44, 738-739.	0.9	0
27	Myocardial Protection from Either Ischaemic Preconditioning or Nicorandil Is Not Blocked by Gliclazide. Cardiovascular Drugs and Therapy, 2004, 18, 113-119.	1.3	39
28	Protection from myocardial stunning by ischaemia and hypoxia with the adenosine A3 receptor agonist, IB-MECA. European Journal of Pharmacology, 2003, 477, 235-245.	1.7	23
29	The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovascular Research, 2003, 57, 405-415.	1.8	61
30	Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning?. Cardiovascular Research, 2002, 55, 534-543.	1.8	487
31	Adenosine A3receptor activation protects the myocardium from reperfusion/reoxygenation injury. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1307-H1313.	1.5	87
32	Role of endothelium in ischaemia-induced myocardial dysfunction of isolated working hearts: cardioprotection by activation of adenosine A2A receptors. Autonomic and Autacoid Pharmacology, 2001, 21, 263-271.	0.7	23
33	Glimepiride, a Novel Sulfonylurea, Does Not Abolish Myocardial Protection Afforded by Either Ischemic Preconditioning or Diazoxide. Circulation, 2001, 103, 3111-3116.	1.6	128