
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292170/publications.pdf Version: 2024-02-01

PLIFUS D FOWADOS

#	Article	IF	CITATIONS
1	Indoor time–microenvironment–activity patterns in seven regions of Europe. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 170-181.	1.8	364
2	An assessment of programs to promote improved household stoves in China. Energy for Sustainable Development, 2004, 8, 33-52.	2.0	181
3	In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmospheric Environment, 2008, 42, 1206-1222.	1.9	173
4	VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland. Atmospheric Environment, 2001, 35, 4531-4543.	1.9	172
5	VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland. Atmospheric Environment, 2001, 35, 4829-4841.	1.9	169
6	Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 2008, 33, 859-870.	4.3	159
7	Implications of changes in household stoves and fuel use in China. Energy Policy, 2004, 32, 395-411.	4.2	134
8	Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: conclusions from the Household Energy and Health Project. Energy for Sustainable Development, 2007, 11, 5-18.	2.0	130
9	Personal child and mother carbon monoxide exposures and kitchen levels: Methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE). Journal of Exposure Science and Environmental Epidemiology, 2010, 20, 406-416.	1.8	126
10	Performance testing for monitoring improved biomass stove interventions: experiences of the Household Energy and Health Project. Energy for Sustainable Development, 2007, 11, 57-70.	2.0	124
11	Impact of Patsari improved cookstoves on indoor air quality in Michoacán, Mexico. Energy for Sustainable Development, 2007, 11, 45-56.	2.0	116
12	Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico. Indoor Air, 2008, 18, 93-105.	2.0	112
13	Beyond fuelwood savings: Valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico. Ecological Economics, 2010, 69, 2598-2605.	2.9	108
14	Household CO and PM measured as part of a review of China's National Improved Stove Program. Indoor Air, 2007, 17, 189-203.	2.0	101
15	Adoption and use of improved biomass stoves in Rural Mexico. Energy for Sustainable Development, 2011, 15, 176-183.	2.0	101
16	Impact of improved biomass cookstoves on indoor air quality near Pune, India. Energy for Sustainable Development, 2007, 11, 19-32.	2.0	91
17	The impact of improved wood-burning stoves on fine particulate matter concentrations in rural Mexican homes. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 224-232.	1.8	87
18	Quantification of Carbon Savings from Improved Biomass Cookstove Projects. Environmental Science & Technology, 2009, 43, 2456-2462.	4.6	85

#	Article	IF	CITATIONS
19	Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS – Helsinki, Finland. Atmospheric Environment, 2001, 35, 2473-2481.	1.9	83
20	Impact of improved cookstoves on indoor air quality in the Bundelkhand region in India. Energy for Sustainable Development, 2007, 11, 33-44.	2.0	82
21	New Approaches to Performance Testing of Improved Cookstoves. Environmental Science & Technology, 2010, 44, 368-374.	4.6	78
22	Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmospheric Chemistry and Physics, 2018, 18, 2461-2480.	1.9	69
23	An inexpensive light-scattering particle monitor: field validation. Journal of Environmental Monitoring, 2007, 9, 1099.	2.1	59
24	Indoor particle size distributions in homes with open fires and improved Patsari cook stovesâ~†. Atmospheric Environment, 2010, 44, 2881-2886.	1.9	58
25	Seasonal deposition of housedusts onto household surfaces. Science of the Total Environment, 1998, 224, 69-80.	3.9	56
26	An Inexpensive Dual-Chamber Particle Monitor: Laboratory Characterization. Journal of the Air and Waste Management Association, 2006, 56, 789-799.	0.9	52
27	Promoting Smoke-Free Homes: A Novel Behavioral Intervention Using Real-Time Audio-Visual Feedback on Airborne Particle Levels. PLoS ONE, 2013, 8, e73251.	1.1	52
28	Spatial analysis of bioavailable soil lead concentrations in Los Angeles, California. Environmental Research, 2010, 110, 309-317.	3.7	50
29	Personal exposures to VOC in the upper end of the distribution—relationships to indoor, outdoor and workplace concentrations. Atmospheric Environment, 2005, 39, 2299-2307.	1.9	47
30	Emission Measurements from Traditional Biomass Cookstoves in South Asia and Tibet. Environmental Science & Technology, 2019, 53, 3306-3314.	4.6	47
31	Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China. Chemosphere, 2003, 50, 201-215.	4.2	41
32	Evaluation of VOC measurements in the EXPOLIS study. Journal of Environmental Monitoring, 2001, 3, 159-165.	2.1	40
33	Time–activity relationships to VOC personal exposure factors. Atmospheric Environment, 2006, 40, 5685-5700.	1.9	38
34	Design considerations for field studies of changes in indoor air pollution due to improved stoves. Energy for Sustainable Development, 2007, 11, 71-81.	2.0	38
35	Residential Indoor, Outdoor, and Workplace Concentrations of Carbonyl Compounds: Relationships with Personal Exposure Concentrations and Correlation with Sources. Journal of the Air and Waste Management Association, 2003, 53, 560-573.	0.9	36
36	Combined Optical and Ionization Measurement Techniques for Inexpensive Characterization of Micrometer and Submicrometer Aerosols. Aerosol Science and Technology, 2004, 38, 1054-1062.	1.5	36

#	Article	IF	CITATIONS
37	Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households. Sensors, 2017, 17, 1879.	2.1	35
38	Fugitive Emissions and Health Implications of Plancha-Type Stoves. Environmental Science & Technology, 2018, 52, 10848-10855.	4.6	34
39	Emissions from village cookstoves in Haryana, India, and their potential impacts on air quality. Atmospheric Chemistry and Physics, 2018, 18, 15169-15182.	1.9	33
40	Fine particulate concentrations on sidewalks in five Southern California cities. Atmospheric Environment, 2011, 45, 4025-4033.	1.9	32
41	Health assessment of future PM2.5 exposures from indoor, outdoor, and secondhand tobacco smoke concentrations under alternative policy pathways in Ulaanbaatar, Mongolia. PLoS ONE, 2017, 12, e0186834.	1.1	31
42	Impacts of household sources on air pollution at village and regional scales in India. Atmospheric Chemistry and Physics, 2019, 19, 7719-7742.	1.9	30
43	Field Emission Measurements of Solid Fuel Stoves in Yunnan, China Demonstrate Dominant Causes of Uncertainty in Household Emission Inventories. Environmental Science & Technology, 2019, 53, 3323-3330.	4.6	30
44	Improved stove programs need robust methods to estimate carbon offsets. Climatic Change, 2010, 102, 641-649.	1.7	29
45	Comparative performance of five Mexican plancha-type cookstoves using water boiling tests. Development Engineering, 2017, 2, 20-28.	1.4	25
46	In-Home Emissions Performance of Cookstoves in Asia and Africa. Atmosphere, 2019, 10, 290.	1.0	25
47	Global burden of disease as a result of indoor air pollution in Shaanxi, Hubei and Zhejiang, China. Science of the Total Environment, 2011, 409, 1391-1398.	3.9	21
48	Application of Real-time Particle Sensors to Help Mitigate Exposures of Wildland Firefighters. Archives of Environmental and Occupational Health, 2005, 60, 40-43.	0.7	20
49	Understanding Household Energy Transitions: From Evaluating Single Cookstoves to "Clean Stacking― Alternatives. Atmosphere, 2019, 10, 693.	1.0	15
50	Probe-based measurements of moisture in dung fuel for emissions measurements. Energy for Sustainable Development, 2016, 35, 1-6.	2.0	14
51	Influence of Sebum and Stratum Corneum Hydration on Pesticide/Herbicide Collection Efficiencies of the Human Hand. Journal of Occupational and Environmental Hygiene, 2001, 16, 791-797.	0.5	13
52	Modeling emission rates and exposures from outdoor cooking. Atmospheric Environment, 2017, 164, 50-60.	1.9	13
53	An Ultrasound Personal Locator for Time-Activity Assessment. International Journal of Occupational and Environmental Health, 2009, 15, 122-132.	1.2	11
54	Nitrogen Dioxide and Ozone As Factors in the Availability of Lead from Lead-Based Paints. Environmental Science & Technology, 2009, 43, 8516-8521.	4.6	10

#	Article	IF	CITATIONS
55	The cost of convenience; Air pollution and noise on freeway and arterial light rail station platforms in Los Angeles. Transportation Research, Part D: Transport and Environment, 2016, 49, 127-137.	3.2	8
56	Emissions Measurements from Household Solid Fuel Use in Haryana, India: Implications for Climate and Health Co-benefits. Environmental Science & amp; Technology, 2021, 55, 3201-3209.	4.6	8
57	Subgroups exposed to systematically different elemental compositions of PM2.5. Atmospheric Environment, 2009, 43, 3571-3578.	1.9	7
58	Potential for Atmospheric-Driven Lead Paint Degradation in the South Coast Air Basin of California. Environmental Science & Technology, 2009, 43, 8881-8887.	4.6	6
59	Investigation of roadside fine particulate matter concentration surrounding major arterials in five Southern Californian cities. Journal of the Air and Waste Management Association, 2013, 63, 482-498.	0.9	5
60	Letter to the Editor. Indoor Air, 2006, 16, 81-81.	2.0	0