
Jeffery T Lichtenhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5291728/publications.pdf Version: 2024-02-01

IFFFFDY T LICHTENHAN

#	Article	IF	CITATIONS
1	A New Auditory Threshold Estimation Technique for Low Frequencies. Ear and Hearing, 2013, 34, 42-51.	2.1	61
2	The Auditory Nerve Overlapped Waveform (ANOW) Originates in the Cochlear Apex. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 395-411.	1.8	47
3	Medial olivocochlear efferent reflex inhibition of human cochlear nerve responses. Hearing Research, 2016, 333, 216-224.	2.0	46
4	Efferent inhibition strength is a physiological correlate of hyperacusis in children with autism spectrum disorder. Journal of Neurophysiology, 2017, 118, 1164-1172.	1.8	41
5	Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig. Journal of the Acoustical Society of America, 2013, 133, 1561-1571.	1.1	34
6	Click- and chirp-evoked human compound action potentials. Journal of the Acoustical Society of America, 2010, 127, 2992-2996.	1.1	31
7	Temporary hearing loss influences post-stimulus time histogram and single neuron action potential estimates from human compound action potentials. Journal of the Acoustical Society of America, 2008, 123, 2200-2212.	1.1	27
8	Effects of Low-Frequency Biasing on Otoacoustic and Neural Measures Suggest that Stimulus-Frequency Otoacoustic Emissions Originate Near the Peak Region of the Traveling Wave. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 17-28.	1.8	24
9	Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials. Frontiers in Neuroscience, 2017, 11, 189.	2.8	22
10	Direct administration of 2-Hydroxypropyl-Beta-Cyclodextrin into guinea pig cochleae: Effects on physiological and histological measurements. PLoS ONE, 2017, 12, e0175236.	2.5	20
11	Drug delivery into the cochlear apex: Improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral. Journal of Neuroscience Methods, 2016, 273, 201-209.	2.5	17
12	Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region. Journal of Neurophysiology, 2019, 121, 1018-1033.	1.8	16
13	The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions. Biophysical Journal, 2020, 118, 1183-1195.	0.5	16
14	How Does Wind Turbine Noise Affect People?. Acoustics Today, 2014, 10, 20-28.	1.0	14
15	An analysis of cochlear response harmonics: Contribution of neural excitation. Journal of the Acoustical Society of America, 2015, 138, 2957-2963.	1.1	12
16	The Auditory Nerve Overlapped Waveform (ANOW) Detects Small Endolymphatic Manipulations That May Go Undetected by Conventional Measurements. Frontiers in Neuroscience, 2017, 11, 405.	2.8	12
17	Editorial: New Advances in Electrocochleography for Clinical and Basic Investigation. Frontiers in Neuroscience, 2018, 12, 310.	2.8	11
18	Early Detection of Endolymphatic Hydrops using the Auditory Nerve Overlapped Waveform (ANOW). Neuroscience, 2020, 425, 251-266.	2.3	11

JEFFERY T LICHTENHAN

#	Article	lF	CITATIONS
19	Influence of hearing sensitivity on mechano-electric transduction. Journal of the Acoustical Society of America, 2003, 114, 3251-3263.	1.1	9
20	Predicting severity of cochlear hair cell damage in adult chickens using DPOAE input–output functions. Hearing Research, 2005, 201, 109-120.	2.0	9
21	The influence of noise exposure on the parameters of a convolution model of the compound action potential. Journal of the Acoustical Society of America, 2008, 124, 2174-2185.	1.1	8
22	Human Summating Potential Using Continuous Loop Averaging Deconvolution: Response Amplitudes Vary with Tone Burst Repetition Rate and Duration. Frontiers in Neuroscience, 2017, 11, 429.	2.8	8
23	Is cochlear synapse loss an origin of low-frequency hearing loss associated with endolymphatic hydrops?. Hearing Research, 2020, 398, 108099.	2.0	8
24	Amplitude modulation of audible sounds by non-audible sounds: Understanding the effects of wind turbine noise. Proceedings of Meetings on Acoustics, 2013, , .	0.3	6
25	Assessment of low-frequency hearing with narrow-band chirp-evoked 40-Hz sinusoidal auditory steady-state response. International Journal of Audiology, 2016, 55, 239-247.	1.7	6
26	Patients With Normal Hearing Thresholds but Difficulty Hearing in Noisy Environments: A Study on the Willingness to Try Auditory Training. Otology and Neurotology, 2018, 39, 950-956.	1.3	6
27	Medial olivocochlear reflex effects on amplitude growth functions of long- and short-latency components of click-evoked otoacoustic emissions in humans. Journal of Neurophysiology, 2021, 125, 1938-1953.	1.8	6
28	Behavioral Pure-Tone Threshold Shifts Caused by Tympanic Membrane Electrodes. Ear and Hearing, 2016, 37, e273-e275.	2.1	5
29	Reducing Auditory Nerve Excitability by Acute Antagonism of Ca2+-Permeable AMPA Receptors. Frontiers in Synaptic Neuroscience, 2021, 13, 680621.	2.5	5
30	A Revised Surgical Approach to Induce Endolymphatic Hydrops in the Guinea Pig. Journal of Visualized Experiments, 2020, , .	0.3	4
31	Intracochlear Electrocochleography and Speech Perception Scores in Cochlear Implant Recipients. Laryngoscope, 2021, 131, E2681-E2688.	2.0	3
32	The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing. AIP Conference Proceedings, 2015, , .	0.4	2
33	Surveying Patients with â€~Hidden Hearing Loss'. Hearing Journal, 2018, 71, 28,30.	0.1	2
34	Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclodextrin Provide Evidence That Loudness Recruitment Can Have a Cochlear Origin. Frontiers in Surgery, 2021, 8, 687490.	1.4	2