Lin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5291726/publications.pdf Version: 2024-02-01

Тім 7нц

#	Article	IF	CITATIONS
1	Comparative exergy analysis of chemical looping combustion thermally coupled and conventional steam methane reforming for hydrogen production. Journal of Cleaner Production, 2016, 131, 247-258.	9.3	99
2	Tech-economic assessment of second-generation CCS: Chemical looping combustion. Energy, 2018, 144, 915-927.	8.8	65
3	Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO 2 capture for combined cooling, heating and power production. Applied Energy, 2017, 195, 861-876.	10.1	63
4	Thermodynamic evaluation of chemical looping combustion for combined cooling heating and power production driven by coal. Energy Conversion and Management, 2017, 135, 200-211.	9.2	54
5	Thermodynamic analysis of H ₂ production from CaO sorption-enhanced methane steam reforming thermally coupled with chemical looping combustion as a novel technology. International Journal of Energy Research, 2015, 39, 356-369.	4.5	53
6	Performance analysis of a feasible technology for power and high-purity hydrogen production driven by methane fuel. Applied Thermal Engineering, 2015, 75, 103-114.	6.0	48
7	A modified process for overcoming the drawbacks of conventional steam methane reforming for hydrogen production: Thermodynamic investigation. Chemical Engineering Research and Design, 2015, 104, 792-806.	5.6	45
8	A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven power technologies for CO2 capture. Energy, 2017, 119, 1171-1180.	8.8	38
9	In Situ Alkylated Graphene as Oil Dispersible Additive for Friction and Wear Reduction. Industrial & Engineering Chemistry Research, 2017, 56, 9029-9034.	3.7	34
10	MSW to synthetic natural gas: System modeling and thermodynamics assessment. Waste Management, 2016, 48, 257-264.	7.4	32
11	Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission. Energy, 2018, 149, 34-46.	8.8	30
12	Alkyl phosphate modified graphene oxide as friction and wear reduction additives in oil. Journal of Materials Science, 2019, 54, 4626-4636.	3.7	30
13	Zero-energy penalty carbon capture and utilization for liquid fuel and power cogeneration with chemical looping combustion. Journal of Cleaner Production, 2019, 235, 34-43.	9.3	26
14	Life cycle assessment of CO2 emission reduction potential of carbon capture and utilization for liquid fuel and power cogeneration. Fuel Processing Technology, 2021, 221, 106924.	7.2	26
15	Comparative exergy analysis between liquid fuels production through carbon dioxide reforming and conventional steam reforming. Journal of Cleaner Production, 2018, 192, 88-98.	9.3	25
16	Solar-driven novel methane reforming with carbon looping for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 24441-24449.	7.1	21
17	Influence of Monomer Ratio on the Performance of Poly(octadecyl acrylate- <i>co</i> -styrene) as Pour-Point Depressants. Energy & Fuels, 2020, 34, 6791-6798.	5.1	21
18	Methanol-power production using coal and methane as materials integrated with a two-level adjustment system. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 346-355.	5.3	18

Lin Zhu

#	Article	IF	CITATIONS
19	Life-cycle assessment of SNG and power generation: The role of implement of chemical looping combustion for carbon capture. Energy, 2019, 172, 777-786.	8.8	18
20	Comparative exergy and exergoeconomic analysis between liquid fuels production through chemical looping hydrogen generation and methane reforming with CO2. Energy Conversion and Management, 2020, 222, 113239.	9.2	17
21	Exergy analysis on the process for three reactors chemical looping hydrogen generation. International Journal of Hydrogen Energy, 2020, 45, 24322-24332.	7.1	15
22	Hydrogen and Power Cogeneration Based on Chemical Looping Combustion: Is It Capable of Reducing Carbon Emissions and the Cost of Production?. Energy & Fuels, 2020, 34, 3501-3512.	5.1	15
23	Performance Analysis of a New Integrated Gasification Technology Driven by Biomass for Hydrogen and Electricity Cogeneration with a Dual Chemical Looping Process. Energy Technology, 2016, 4, 1274-1285.	3.8	13
24	New Technique Integrating Hydrate-Based Gas Separation and Chemical Absorption for the Sweetening of Natural Gas with High H ₂ S and CO ₂ Contents. ACS Omega, 2021, 6, 26180-26190.	3.5	12
25	Thermo-economic investigation: an insight tool to analyze NGCC with calcium-looping process and with chemical-looping combustion for CO ₂ capture. International Journal of Energy Research, 2016, 40, 1908-1924.	4.5	11
26	Thermodynamics of Hydrogen Production Based on Coal Gasification Integrated withÂaÂDual Chemical Looping Process. Chemical Engineering and Technology, 2016, 39, 1912-1920.	1.5	9
27	Schiff base compound as a corrosion inhibitor for mild steel in 1ÂM HCl. Research on Chemical Intermediates, 2015, 41, 4943-4960.	2.7	8
28	Technical, Economical, and Environmental Performance Assessment of an Improved Triethylene Glycol Dehydration Process for Shale Gas. ACS Omega, 2022, 7, 1861-1873.	3.5	8
29	Double-stage chemical looping combustion combined with sorption enhanced natural gas steam reforming process for hydrogen and power cogeneration: Thermodynamic investigation. Chemical Engineering Research and Design, 2016, 114, 247-257.	5.6	7
30	Energy quality factor and exergy destruction processes analysis for chemical looping hydrogen generation by coal. International Journal of Energy Research, 2021, 45, 5527-5543.	4.5	5
31	Corrosion failure analysis of 20# steel in the process of natural gas purification. Russian Journal of Applied Chemistry, 2015, 88, 1510-1516.	0.5	3
32	Development of a Kinetic Model for Biomass Gasification in Dual Fluidized Bed Gasifier. Journal of Chemical Engineering of Japan, 2014, 47, 855-863.	0.6	1
33	Quad-generation of combined cooling, heating, power, and hydrogen in a dual-loop chemical looping process: Process simulation and thermodynamic evaluation. AIP Advances, 2020, 10, 085223.	1.3	1