
Asha Chelani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5291241/publications.pdf Version: 2024-02-01

Δςμα Chelani

#	Article	IF	CITATIONS
1	Lockdown during COVID-19 pandemic: A case study from Indian cities shows insignificant effects on persistent property of urban air quality. Geoscience Frontiers, 2022, 13, 101284.	8.4	38
2	Unified artificial neural network-group contribution method for predictions of normal boiling point and critical temperature of refrigerants and related compounds. International Journal of Refrigeration, 2022, 140, 112-124.	3.4	4
3	Prediction of flammability classifications of refrigerants by artificial neural network and random forest model. International Journal of Refrigeration, 2021, 131, 947-955.	3.4	8
4	Prediction of global warming potentials of refrigerants and related compounds from their molecular structure – An artificial neural network with group contribution method. International Journal of Refrigeration, 2021, 131, 756-765.	3.4	4
5	Long-memory property in air pollutant concentrations. Atmospheric Research, 2016, 171, 1-4.	4.1	27
6	Evaluation of bias, precision, and systematic errors in proficiency testing of Clâ ^{^,} and Cu concentration in water. Accreditation and Quality Assurance, 2011, 16, 379-382.	0.8	1
7	Particle Size Distribution in Ambient Air of Delhi and Its Statistical Analysis. Bulletin of Environmental Contamination and Toxicology, 2010, 85, 22-27.	2.7	57
8	Source Apportionment of PM10 in Mumbai, India Using CMB Model. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 190-195.	2.7	37
9	Air Quality Status and Sources of PM10 in Kanpur City, India. Bulletin of Environmental Contamination and Toxicology, 2005, 74, 421-428.	2.7	6
10	Impact of Change in Fuel Quality on PM10 in Delhi. Bulletin of Environmental Contamination and Toxicology, 2005, 75, 600-607.	2.7	7
11	Forecasting nitrogen dioxide concentration in ambient air using artificial Neuralâ€networks. International Journal of Environmental Studies, 2001, 58, 487-499.	1.6	8
12	Airborne Toxic Metals in Air of Mumbai City, India. Bulletin of Environmental Contamination and Toxicology, 2001, 66, 196-205.	2.7	8
13	Estimating background particulate matter concentration in Indian cities through statistical methods. International Journal of Environmental Science and Technology, 0, , 1.	3.5	1