Aleksey Drozdov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5291123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the viscoelastic response of hydrogel scaffolds with covalent and dynamic bonds. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105179.	3.1	9
2	Equilibrium Swelling of Thermo-Responsive Gels in Mixtures of Solvents. Chemistry, 2022, 4, 681-700.	2.2	0
3	Equilibrium swelling of thermoâ€responsive coreâ€shell microgels. Journal of Applied Polymer Science, 2021, 138, 50354.	2.6	2
4	Structure–property relations in linear viscoelasticity of supramolecular hydrogels. RSC Advances, 2021, 11, 16860-16880.	3.6	5
5	Equilibrium swelling of multi-stimuli-responsive superabsorbent hydrogels. Mechanics of Soft Materials, 2021, 3, 1.	0.9	1
6	Modulation of the volume phase transition temperature of thermo-responsive gels. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104215.	3.1	7
7	Equilibrium Swelling of Biocompatible Thermo-Responsive Copolymer Gels. Gels, 2021, 7, 40.	4.5	10
8	The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels. Polymer, 2021, 221, 123637.	3.8	6
9	Thermo-Viscoelastic Response of Protein-Based Hydrogels. Bioengineering, 2021, 8, 73.	3.5	1
10	Thermo-Mechanical Behavior of Poly(ether ether ketone): Experiments and Modeling. Polymers, 2021, 13, 1779.	4.5	5
11	Equilibrium swelling of multi-stimuli-responsive copolymer gels. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104623.	3.1	1
12	Modulation of the volume phase transition temperature for multi-stimuli-responsive copolymer hydrogels. International Journal of Mechanical Sciences, 2021, 211, 106753.	6.7	10
13	The effect of porosity on elastic moduli of polymer foams. Journal of Applied Polymer Science, 2020, 137, 48449.	2.6	13
14	Modeling the elastic response of polymer foams at finite deformations. International Journal of Mechanical Sciences, 2020, 171, 105398.	6.7	6
15	Thermo-mechanical behavior of elastomers with dynamic covalent bonds. International Journal of Engineering Science, 2020, 147, 103200.	5.0	13
16	Modeling dielectric permittivity of polymer composites at microwave frequencies. Materials Research Bulletin, 2020, 126, 110818.	5.2	7
17	The effect of saccharides on equilibrium swelling of thermo-responsive gels. RSC Advances, 2020, 10, 30723-30733.	3.6	2
18	Modeling dielectric permittivity of polymer composites filled with transition metal dichalcogenide nanoparticles. Journal of Composite Materials, 2020, 54, 3841-3855.	2.4	2

#	Article	IF	CITATIONS
19	Mechanical response and equilibrium swelling of thermoresponsive copolymer hydrogels. Polymer International, 2020, 69, 974-984.	3.1	11
20	Tension–compression asymmetry in the mechanical response of hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103851.	3.1	15
21	Electromagnetic properties and EMI shielding effectiveness of polymer composites reinforced with ferromagnetic particles at microwave frequencies. Journal of Applied Physics, 2020, 127, 125101.	2.5	9
22	Self-recovery, fatigue and anti-fatigue of supramolecular elastomers. International Journal of Fatigue, 2020, 134, 105496.	5.7	2
23	Modeling electrical conductivity of polymer nanocomposites with aggregated filler. Polymer Engineering and Science, 2020, 60, 1556-1565.	3.1	5
24	Equilibrium swelling of thermo-responsive copolymer microgels. RSC Advances, 2020, 10, 42718-42732.	3.6	7
25	Thermal conductivity of highly filled polymer nanocomposites. Composites Science and Technology, 2019, 182, 107717.	7.8	19
26	Modeling Thermal Conductivity of Highly Filled Polymer Composites. Polymer Engineering and Science, 2019, 59, 2174-2179.	3.1	6
27	Selfâ€recovery and fatigue of doubleâ€network gels with permanent and reversible bonds. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 438-453.	2.1	8
28	Macroporous temperatureâ€sensitive gels with fast response: Comparison of preparation methods. Journal of Applied Polymer Science, 2018, 135, 46353.	2.6	7
29	Mechanical behavior of temperature-sensitive gels under equilibrium and transient swelling. International Journal of Engineering Science, 2018, 128, 79-100.	5.0	28
30	Modeling the non-isothermal viscoelastic response of glassy polymers. Acta Mechanica, 2018, 229, 1137-1156.	2.1	6
31	Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling. Acta Mechanica, 2018, 229, 5067-5092.	2.1	16
32	Mechanical response of double-network gels with dynamic bonds under multi-cycle deformation. Polymer, 2018, 150, 95-108.	3.8	4
33	Nonmonotonic swelling of agaroseâ€carbopol hybrid hydrogel: Experimental and theoretical analysis. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 444-454.	2.1	5
34	Modeling the response of double-network gels with sacrificial junctions under swelling. International Journal of Solids and Structures, 2017, 122-123, 175-188.	2.7	9
35	Fading memory of deformation history in carbon black-filled thermoplastic elastomers. Polymer Testing, 2017, 58, 1-12.	4.8	1
36	Bending of multilayer nanomembranes. Composite Structures, 2017, 182, 261-272.	5.8	2

#	Article	IF	CITATIONS
37	Structure–property relations for temperature-responsive gels. Polymer, 2017, 132, 164-173.	3.8	10
38	A simplified model for equilibrium and transient swelling of thermo-responsive gels. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 20-32.	3.1	11
39	Mechanical response and equilibrium swelling of temperature-responsive gels. European Polymer Journal, 2017, 94, 56-67.	5.4	11
40	Influence of temperature on viscoelastic–viscoplastic behavior of poly(lactic acid) under loading–unloading. Polymer Engineering and Science, 2017, 57, 239-247.	3.1	4
41	Swelling of glucose-responsive gels functionalized with boronic acid. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 533-541.	3.1	5
42	Structure-property relations for equilibrium swelling of cationic gels. European Polymer Journal, 2016, 79, 23-35.	5.4	4
43	Swelling of thermo-responsive gels under hydrostatic pressure. Meccanica, 2016, 51, 1419-1434.	2.0	12
44	Constitutive equations for the kinetics of swelling of hydrogels. Mechanics of Materials, 2016, 102, 61-73.	3.2	36
45	Swelling-induced bending of bilayer gel beams. Composite Structures, 2016, 153, 961-971.	5.8	15
46	Modeling the effect of ionic strength on swelling of pH-sensitive macro- and nanogels. Materials Today Communications, 2016, 6, 92-101.	1.9	7
47	Inhomogeneous swelling of pH-responsive gels. International Journal of Solids and Structures, 2016, 87, 11-25.	2.7	22
48	Modeling the response of polymer–ionic liquid electromechanical actuators. Acta Mechanica, 2016, 227, 437-465.	2.1	8
49	Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels. Journal of Chemical Physics, 2015, 142, 114904.	3.0	59
50	Equilibrium swelling of core–shell composite microgels. Meccanica, 2015, 50, 1579-1592.	2.0	11
51	Volume phase transition in thermo-responsive hydrogels: constitutive modeling and structure–property relations. Acta Mechanica, 2015, 226, 1283-1303.	2.1	36
52	Modeling the effects of temperature and pH on swelling of stimuli-responsive gels. European Polymer Journal, 2015, 73, 278-296.	5.4	31
53	Mechanical response of HEMA gel under cyclic deformation: Viscoplasticity and swelling-induced recovery. International Journal of Solids and Structures, 2015, 52, 220-234.	2.7	13
54	Enhancement of mechanical properties of polypropylene by blending with styrene-(ethylene-butylene)-styrene tri-block copolymer. Journal of Polymer Engineering, 2014, 34, 765-774.	1.4	8

#	Article	IF	CITATIONS
55	Time-dependent response of hydrogels under constrained swelling. Journal of Applied Physics, 2014, 115, 233517.	2.5	11
56	A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mechanica, 2014, 225, 2987-3005.	2.1	24
57	Viscoplastic response of electrode particles in Li-ion batteries driven by insertion of lithium. International Journal of Solids and Structures, 2014, 51, 690-705.	2.7	36
58	Constitutive equations for self-limiting lithiation of electrode nanoparticles in Li-ion batteries. Mechanics Research Communications, 2014, 57, 67-73.	1.8	18
59	Unusual mechanical response of carbon black-filled thermoplastic elastomers. Mechanics of Materials, 2014, 69, 116-131.	3.2	12
60	Multi-cycle deformation of silicone elastomer: observations and constitutive modeling with finite strains. Meccanica, 2013, 48, 2061-2074.	2.0	6
61	Fading memory of loading history in polypropylene and a polypropylene/clay nanocomposite. Mechanics of Composite Materials, 2013, 49, 85-96.	1.4	1
62	Stress–strain relations for hydrogels under multiaxial deformation. International Journal of Solids and Structures, 2013, 50, 3570-3585.	2.7	55
63	Constitutive Modeling of the Mechanical Response of Nanocomposite Hydrogels for Tissue Engineering. Procedia Engineering, 2013, 59, 37-45.	1.2	1
64	Multi-cycle deformation of semicrystalline polymers: Observations and constitutive modeling. Mechanics Research Communications, 2013, 48, 70-75.	1.8	12
65	Effect of crystalline structure on the mechanical response of polypropylene under cyclic deformation. Journal of Polymer Engineering, 2013, 33, 181-190.	1.4	0
66	Constitutive equations in finite elasticity of swollen elastomers. International Journal of Solids and Structures, 2013, 50, 1494-1504.	2.7	52
67	Mechanical response of polypropylene under multiple-step loading. International Journal of Solids and Structures, 2013, 50, 815-823.	2.7	6
68	Volume changes in hydrogels subjected to finite deformations. Mechanics Research Communications, 2013, 50, 33-38.	1.8	5
69	Timeâ€dependent response of polypropylene/clay nanocomposites under tension and retraction. Polymer Engineering and Science, 2013, 53, 931-940.	3.1	3
70	Cyclic viscoplasticity of semicrystalline polymers with finite deformations. Mechanics of Materials, 2013, 56, 53-64.	3.2	34
71	Finite elasticity of nanocomposite hydrogels. Composite Interfaces, 2013, 20, 673-692.	2.3	6
72	Self-limiting lithiation of electrode nanoparticles in Li-ion batteries. Journal of Applied Physics, 2013, 114, .	2.5	16

#	Article	IF	CITATIONS
73	Cyclic viscoelastoplasticity of polypropylene/nanoclay composites. Mechanics of Time-Dependent Materials, 2012, 16, 397-425.	4.4	6
74	Cyclic viscoelastoplasticity of polypropylene/nanoclay hybrids. Computational Materials Science, 2012, 53, 396-408.	3.0	10
75	Stress- and strain-controlled cyclic deformation of polypropylene. Computational Materials Science, 2012, 64, 198-202.	3.0	5
76	Properties and Semicrystalline Structure Evolution of Polypropylene/Montmorillonite Nanocomposites under Mechanical Load. Macromolecules, 2012, 45, 962-973.	4.8	31
77	Inverse relaxation in polypropylene. Iranian Polymer Journal (English Edition), 2012, 21, 701-711.	2.4	3
78	Cyclic deformations of polypropylene with a strain ontrolled program. Polymer Engineering and Science, 2012, 52, 2316-2326.	3.1	3
79	Multi-cycle viscoplastic deformation of polypropylene. Computational Materials Science, 2011, 50, 1991-2000.	3.0	18
80	Cyclic strengthening of polypropylene under strain-controlled loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8781-8789.	5.6	19
81	Mullins' effect in semicrystalline polymers: experiments andÂmodeling. Meccanica, 2011, 46, 359-370.	2.0	16
82	Cyclic viscoelastoplasticity of polypropylene: effects of crystalline structure. Acta Mechanica, 2011, 221, 201-222.	2.1	4
83	Cyclic viscoelastoplasticity and low-cycle fatigue of polymer composites. International Journal of Solids and Structures, 2011, 48, 2026-2040.	2.7	57
84	Effect of temperature on the viscoelastic and viscoplastic behavior of polypropylene. Mechanics of Time-Dependent Materials, 2010, 14, 411-434.	4.4	29
85	Cyclic viscoplasticity of semicrystalline polymers. Mechanics Research Communications, 2010, 37, 28-31.	1.8	4
86	Linear thermo-viscoelasticity of polypropylene. Mechanics Research Communications, 2010, 37, 690-695.	1.8	7
87	Creep rupture and viscoelastoplasticity of polypropylene. Engineering Fracture Mechanics, 2010, 77, 2277-2293.	4.3	47
88	Cyclic thermo-viscoplasticity of high density polyethylene. International Journal of Solids and Structures, 2010, 47, 1592-1602.	2.7	32
89	Viscoelasticity and viscoplasticity of polypropylene/polyethylene blends. International Journal of Solids and Structures, 2010, 47, 2498-2507.	2.7	13
90	Time-dependent response of polypropylene after strain reversal. International Journal of Solids and Structures, 2010, 47, 3221-3233.	2.7	22

#	Article	IF	CITATIONS
91	Nonlinear time-dependent response of polypropylene/nanoclay melts: Experiments and modeling. Computational Materials Science, 2010, 47, 807-816.	3.0	10
92	Effect of annealing on viscoplasticity of polymer blends: Experiments and modeling. Computational Materials Science, 2010, 50, 59-64.	3.0	2
93	Viscoelasticity, viscoplasticity, and creep failure of polypropylene/clay nanocomposites. Composites Science and Technology, 2009, 69, 2596-2603.	7.8	61
94	Constitutive model for cyclic deformation ofÂperfluoroelastomers. Mechanics of Time-Dependent Materials, 2009, 13, 275-299.	4.4	14
95	Creep failure of polypropylene: experiments and constitutive modeling. International Journal of Fracture, 2009, 159, 63-79.	2.2	16
96	Essential work of fracture and viscoplastic response of a carbon black-filled thermoplastic elastomer. Engineering Fracture Mechanics, 2009, 76, 1977-1995.	4.3	3
97	Mullins' effect in thermoplastic elastomers: Experiments and modeling. Mechanics Research Communications, 2009, 36, 437-443.	1.8	20
98	Thermo-viscoplasticity of carbon black-reinforced thermoplastic elastomers. International Journal of Solids and Structures, 2009, 46, 2298-2308.	2.7	22
99	Mullins' effect in semicrystalline polymers. International Journal of Solids and Structures, 2009, 46, 3336-3345.	2.7	57
100	Cyclic viscoplasticity of carbon black-filled thermoplastic elastomers: Experiments and modeling. Computational Materials Science, 2009, 45, 398-406.	3.0	5
101	Thermo-viscoelasticity of polymer melts: experiments and modeling. Acta Mechanica, 2008, 197, 211-245.	2.1	3
102	Cyclic thermo-viscoplasticity of carbon black-reinforced thermoplastic elastomers. Composites Science and Technology, 2008, 68, 3114-3122.	7.8	10
103	Thermo-viscoelastic and viscoplastic behavior of high-density polyethylene. International Journal of Solids and Structures, 2008, 45, 4274-4288.	2.7	49
104	Thermo-viscoelastic response of nanocomposite melts. International Journal of Engineering Science, 2008, 46, 87-104.	5.0	8
105	Cyclic elastoplasticity of solid polymers. Computational Materials Science, 2008, 42, 27-35.	3.0	9
106	Viscoelasticity of polyethylene/montmorillonite nanocomposite melts. Computational Materials Science, 2008, 43, 1027-1035.	3.0	3
107	Cyclic viscoplasticity of high-density polyethylene: Experiments and modeling. Computational Materials Science, 2007, 39, 465-480.	3.0	54
108	Viscoelasticity and viscoplasticity of semicrystalline polymers: Structure–property relations for high-density polyethylene. Computational Materials Science, 2007, 39, 729-751.	3.0	39

#	Article	IF	CITATIONS
109	Constitutive equations in finite elasticity of rubbers. International Journal of Solids and Structures, 2007, 44, 272-297.	2.7	39
110	Cyclic deformation of ternary nanocomposites: Experiments and modeling. International Journal of Solids and Structures, 2007, 44, 2677-2694.	2.7	6
111	An unusual elastoplastic response of thermoplastic elastomers at cyclic deformation. International Journal of Engineering Science, 2007, 45, 660-678.	5.0	10
112	The effect of thermal oxidative degradation of polymers on their viscoelastic response. International Journal of Engineering Science, 2007, 45, 882-904.	5.0	12
113	Cyclic viscoplasticity of high-density polyethylene/montmorillonite clay nanocomposite. European Polymer Journal, 2007, 43, 10-25.	5.4	21
114	A model for thermal degradation of hybrid nanocomposites. European Polymer Journal, 2007, 43, 1681-1690.	5.4	8
115	Pressure–area relations for Langmuir monolayers. European Polymer Journal, 2007, 43, 3374-3379.	5.4	0
116	Fractional oscillator driven by a Gaussian noise. Physica A: Statistical Mechanics and Its Applications, 2007, 376, 237-245.	2.6	8
117	Finite viscoelasticity and viscoplasticity of semicrystalline polymers. Continuum Mechanics and Thermodynamics, 2007, 19, 111-132.	2.2	6
118	Cyclic viscoplasticity of thermoplastic elastomers. Acta Mechanica, 2007, 194, 47-65.	2.1	13
119	Cyclic viscoplasticity of solid polymers: The effects of strain rate and amplitude of deformation. Polymer, 2007, 48, 3003-3012.	3.8	17
120	The effect of impurities on the viscoelastic response of polycarbonate reinforced with short glass fibers. Mechanics Research Communications, 2007, 34, 222-234.	1.8	0
121	A model for the mechanical response of composites with thermoplastic-elastomer matrices. Composites Science and Technology, 2006, 66, 2648-2663.	7.8	6
122	Constitutive equations for the nonlinear viscoelastic and viscoplastic behavior of thermoplastic elastomers. International Journal of Engineering Science, 2006, 44, 205-226.	5.0	25
123	Finite elasticity of thermoplastic elastomers. Polymer, 2006, 47, 3650-3660.	3.8	14
124	Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mechanica, 2006, 183, 231-252.	2.1	17
125	Constitutive equations for the nonlinear elastic response of rubbers. Acta Mechanica, 2006, 185, 31-65.	2.1	7
126	Polymer Networks with Slip-links: 1. Constitutive Equations for an Uncross-linked Network. Continuum Mechanics and Thermodynamics, 2006, 18, 157-170.	2.2	3

#	Article	IF	CITATIONS
127	Polymer Networks with Slip-links: 2. Constitutive Equations for a Cross-linked Network. Continuum Mechanics and Thermodynamics, 2006, 18, 171-193.	2.2	2
128	Distribution Function and Thermodynamic Potentials of a Self-Avoiding Chain. Macromolecular Theory and Simulations, 2006, 15, 404-424.	1.4	1
129	Finite viscoplasticity of polycarbonate reinforced with short glass fibers. Mechanics of Materials, 2005, 37, 473-491.	3.2	10
130	The effect of temperature on the viscoelastic response of polymer melts. International Journal of Engineering Science, 2005, 43, 304-320.	5.0	10
131	Non-entropic theory of rubber elasticity: Flexible chains grafted on a rigid surface. International Journal of Engineering Science, 2005, 43, 1121-1137.	5.0	9
132	Constitutive equations for non-affine polymer networks with slippage of chains. Continuum Mechanics and Thermodynamics, 2005, 17, 217-246.	2.2	3
133	Relationships between Structure and Rheology in Model Nanocomposites of Ethyleneâ^Vinyl-Based Copolymers and Organoclays. Macromolecules, 2005, 38, 3765-3775.	4.8	60
134	Kinetic equations for thermal degradation of polymers. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 575-597.	2.0	4
135	A Constitutive Model in Finite Viscoelasticity of Particle-reinforced Rubbers. Meccanica, 2004, 39, 245-270.	2.0	7
136	The effect of temperature on the viscoelastic behavior of linear low-density polyethylene. Archive of Applied Mechanics, 2004, 73, 591-614.	2.2	2
137	The effect of recycling on the time-dependent behavior of polycarbonate reinforced with short glass fibers. Composites Science and Technology, 2004, 64, 129-144.	7.8	5
138	Constitutive equations for the viscoplastic response of isotactic polypropylene in cyclic tests: The effect of strain rate. Polymer Engineering and Science, 2004, 44, 548-556.	3.1	21
139	The effect of temperature on the viscoelastic response of semicrystalline polymers. Journal of Applied Polymer Science, 2004, 94, 9-23.	2.6	4
140	Linear thermo-viscoelasticity of isotactic polypropylene. Computational Materials Science, 2004, 29, 195-213.	3.0	7
141	Finite viscoelasticity of filled rubber: experiments and numerical simulation. Archive of Applied Mechanics, 2003, 72, 651-672.	2.2	8
142	Finite viscoplasticity of semicrystalline polymers. Archive of Applied Mechanics, 2003, 72, 779-803.	2.2	7
143	A constitutive model for the viscoplastic behavior of rubbery polymers at finite strains. Acta Mechanica, 2003, 164, 139-160.	2.1	1
144	A Model for the Elastoplastic Behavior of Isotactic Poly(propylene) Below the Yield Point. Macromolecular Materials and Engineering, 2003, 288, 164-174.	3.6	5

#	Article	IF	CITATIONS
145	Thermo-Viscoelastic Response of Polycarbonate Reinforced with Short Glass Fibers. Macromolecular Theory and Simulations, 2003, 12, 354-366.	1.4	8
146	Model for the viscoelastic and viscoplastic responses of semicrystalline polymers. Journal of Applied Polymer Science, 2003, 88, 1438-1450.	2.6	13
147	Effect of high-temperature annealing on the elastoplastic response of isotactic polypropylene in loading-unloading tests. Journal of Applied Polymer Science, 2003, 90, 186-196.	2.6	3
148	The effect of annealing on the elastoplastic response of isotactic polypropylene. European Polymer Journal, 2003, 39, 21-31.	5.4	34
149	The effect of annealing on the viscoplastic response of semicrystalline polymers at finite strains. International Journal of Solids and Structures, 2003, 40, 1337-1367.	2.7	14
150	The viscoelastic and viscoplastic behavior of low-density polyethylene. International Journal of Solids and Structures, 2003, 40, 2321-2342.	2.7	33
151	Constitutive equations in finite viscoplasticity of semicrystalline polymers. International Journal of Solids and Structures, 2003, 40, 6217-6243.	2.7	35
152	The effect of strain rate on the viscoplastic behavior of isotactic polypropylene at finite strains. Polymer, 2003, 44, 1211-1228.	3.8	16
153	A micro-mechanical model for the response of filled elastomers at finite strains. International Journal of Plasticity, 2003, 19, 1037-1067.	8.8	38
154	Model for anomalous moisture diffusion through a polymer-clay nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 476-492.	2.1	90
155	Effect of annealing on the viscoelastic and viscoplastic responses of low-density polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1638-1655.	2.1	9
156	Modelling the viscoplastic response of polyethylene in uniaxial loading–unloading tests. Mechanics Research Communications, 2003, 30, 431-442.	1.8	24
157	The viscoelastic behavior of melts of virgin and recycled polycarbonate reinforced with short glass fibers. Mechanics Research Communications, 2003, 30, 595-614.	1.8	4
158	Non-linear viscoelasticity and viscoplasticity of isotactic polypropylene. International Journal of Engineering Science, 2003, 41, 2335-2361.	5.0	36
159	The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylene. Computational Materials Science, 2003, 27, 403-422.	3.0	9
160	The viscoelastic and viscoplastic behavior of polymer composites: polycarbonate reinforced with short glass fibers. Computational Materials Science, 2003, 28, 16-30.	3.0	12
161	Modeling the response of filled elastomers at finite strains by rigid-rod networks. Archive of Applied Mechanics, 2002, 72, 52-76.	2.2	1
162	The effect of temperature on the viscoelastic response of rubbery polymers at finite strains. Acta Mechanica, 2002, 154, 189-214.	2.1	12

#	Article	IF	CITATIONS
163	The payne effect for particle-reinforced elastomers. Polymer Engineering and Science, 2002, 42, 591-604.	3.1	59
164	The effect of annealing on the time-dependent behavior of isotactic polypropylene at finite strains. Polymer, 2002, 43, 4745-4761.	3.8	42
165	The influence of pre-loading and thermal recovery on the viscoelastic response of filled elastomers. Mechanics Research Communications, 2002, 29, 247-256.	1.8	1
166	Buckling of spontaneously twisted ribbons. Physica A: Statistical Mechanics and Its Applications, 2002, 314, 125-129.	2.6	0
167	The nonlinear viscoelastic response of carbon black-filled natural rubbers. International Journal of Solids and Structures, 2002, 39, 5699-5717.	2.7	15
168	Physical aging and nonlinear viscoelasticity of amorphous glassy polymers. Computational Materials Science, 2001, 21, 197-213.	3.0	7
169	The stress–strain response and ultimate strength of filled elastomers. Computational Materials Science, 2001, 21, 395-417.	3.0	14
170	The effects of temperature and molecular weight on the mechanical response and strength of elastomers. Polymer Bulletin, 2001, 46, 215-222.	3.3	5
171	A model of traps for yield in amorphous glassy polymers. Archive of Applied Mechanics, 2001, 71, 23-42.	2.2	1
172	Modelling nonlinear viscoelasticity and damage in amorphous glassy polymers. Mathematical and Computer Modelling, 2001, 33, 883-893.	2.0	8
173	Viscoelasticity and viscoplasticity of glassy polymers in the vicinity of the yield point. Mechanics Research Communications, 2001, 28, 247-254.	1.8	4
174	A model for structural relaxation in amorphous glassy polymers based on the aggregation-fragmentation theory. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1312-1325.	2.1	3
175	Modeling the viscoelastoplastic behavior of amorphous glassy polymers. Polymer Engineering and Science, 2001, 41, 1762-1770.	3.1	3
176	Effect of yielding on the viscoelastic response of amorphous glassy polymers. Journal of Applied Polymer Science, 2001, 80, 2383-2393.	2.6	1
177	The effect of temperature on physical aging of glassy polymers. Journal of Applied Polymer Science, 2001, 81, 3309-3320.	2.6	8
178	Physical aging in amorphous polymers: comparison of observations in calorimetric and mechanical tests. European Polymer Journal, 2001, 37, 1379-1389.	5.4	6
179	A model for the viscoelastic and viscoplastic responses of glassy polymers. International Journal of Solids and Structures, 2001, 38, 8285-8304.	2.7	14
180	The effect of annealing temperature on the viscoelastic response of glassy polymers. Mechanics Research Communications, 2001, 28, 355-362.	1.8	2

#	Article	IF	CITATIONS
181	Viscoelastoplasticity of amorphous glassy polymers. European Polymer Journal, 2000, 36, 2063-2074.	5.4	10
182	A model of cooperative relaxation in finite viscoelasticity of amorphous polymers. International Journal of Non-Linear Mechanics, 2000, 35, 897-909.	2.6	15
183	Nonlinear viscoelasticity and fatigue of glassy polymers. Mechanics Research Communications, 2000, 27, 281-286.	1.8	4
184	Modelling structural recovery in amorphous polymers. Mathematical and Computer Modelling, 2000, 31, 79-95.	2.0	4
185	Enthalpy relaxation in glassy polymers. Polymer Bulletin, 2000, 44, 353-360.	3.3	0
186	Kinetics of enthalpy relaxation in polymeric glasses. Polymer Bulletin, 2000, 45, 303-310.	3.3	3
187	The critical temperature for structural recovery of amorphous glassy polymers. Europhysics Letters, 2000, 49, 569-575.	2.0	3
188	A constitutive model for physical ageing in amorphous glassy polymers. Modelling and Simulation in Materials Science and Engineering, 1999, 7, 1045-1060.	2.0	9
189	A constitutive model in viscoelastoplasticity of glassy polymers. Polymer, 1999, 40, 3711-3727.	3.8	11
190	Modelling volume recovery in glassy polymers. Mechanics Research Communications, 1999, 26, 535-540.	1.8	0
191	A model for the non-linear viscoelastic response and physical aging in glassy polymers. Computational and Theoretical Polymer Science, 1999, 9, 73-87.	1.1	3
192	Modelling the nonlinear viscoelastic behavior of amorphous glassy polymers. Mathematical and Computer Modelling, 1999, 30, 49-72.	2.0	5
193	Viscoelastoplasticity of Rubbery Polymers at Finite Strains. Meccanica, 1999, 34, 85-102.	2.0	1
194	Modelling an anomalous stress relaxation in glassy polymers (the Kitagawa effect). Mathematical and Computer Modelling, 1998, 27, 45-67.	2.0	16
195	A model of adaptive links in finite viscoelastoplasticity of glassy polymers. Mathematical and Computer Modelling, 1998, 28, 19-40.	2.0	20
196	A constitutive model in finite viscoelasticity with an entropy-driven material clock. Mathematical and Computer Modelling, 1997, 25, 45-66.	2.0	6
197	ALMOST SURE STABILITY OF VISCOELASTIC STRUCTURAL MEMBERS DRIVEN BY RANDOM LOADS. Journal of Sound and Vibration, 1996, 197, 293-307.	3.9	2
198	A constitutive model in thermoviscoelasticity. Mechanics Research Communications, 1996, 23, 543-548.	1.8	25

#	Article	IF	CITATIONS
199	Intelligent composite structures: General theory and applications. International Journal of Solids and Structures, 1996, 33, 4411-4429.	2.7	7
200	Stability of a model for cell metabolism. Mathematical and Computer Modelling, 1996, 24, 23-37.	2.0	5
201	Stability of nonhomogeneous aging viscoelastic bodies under dynamic loading. Nonlinear Analysis: Theory, Methods & Applications, 1995, 24, 1361-1375.	1.1	1
202	A constitutive model in finite viscoelasticity. Rheologica Acta, 1995, 34, 562-577.	2.4	11
203	Optimization of winding process for composite pressure vessels. International Journal of Pressure Vessels and Piping, 1995, 62, 69-81.	2.6	10
204	A model for ultradian oscillations of insulin and glucose. Mathematical and Computer Modelling, 1995, 22, 23-38.	2.0	28
205	A new model for an aging thermoviscoelastic material. Mechanics Research Communications, 1995, 22, 441-446.	1.8	8
206	Stability of a class of stochastic integro-differential equations. Stochastic Analysis and Applications, 1995, 13, 517-530.	1.5	17
207	Stability of bars made of linear elastic materials with voids. Archive of Applied Mechanics, 1995, 65, 99-109.	2.2	0
208	Accretion of viscoelastic bodies at finite strains. Mechanics Research Communications, 1994, 21, 329-334.	1.8	6
209	Stability of viscoelastic shells under periodic and stochastic loading. Mechanics Research Communications, 1993, 20, 481-486.	1.8	12
210	Detachment of an elastic beam from a viscoelastic support: A variational approach. International Journal of Mechanical Sciences, 1993, 35, 463-478.	6.7	4
211	Stochasic stability of viscoewtic bars. Stochastic Analysis and Applications, 1992, 10, 265-276.	1.5	15
212	Constitutive model of a viscoelastic material at finite strains. Mechanics Research Communications, 1992, 19, 535-540.	1.8	19
213	Phase transitions in nonhomogeneous, aging, viscoelastic bodies. International Journal of Solids and Structures, 1992, 29, 783-797.	2.7	10
214	Stability of inhomogeneously aging viscoelastic bodies. Soviet Applied Mechanics, 1989, 25, 770-775.	0.0	0
215	Bulk consolidation of inhomogeneously aging elastic bodies. Soviet Applied Mechanics, 1989, 25, 448-454.	0.0	3
216	Optimization problems in the mechanics of growing solids. Mechanics of Composite Materials, 1988, 24, 359-369.	1.4	14

#	Article	IF	CITATIONS
217	Phase transitions in elastic and viscoelastic bodies. Mechanics of Composite Materials, 1986, 22, 79-86.	1.4	2
218	Mechanics of built-up viscoelastic bodies subjected to aging in final deformations. Mechanics of Composite Materials, 1986, 21, 394-405.	1.4	4
219	A model for equilibrium swelling of the UCST â€ŧype thermoâ€responsive hydrogels. Polymer International, 0, , .	3.1	2
220	A Predictive Model for Equilibrium Swelling of Thermoresponsive Gels in Aqueous Solutions of Surfactants. ACS Applied Polymer Materials, 0, , .	4.4	1