Miroslava Trchova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/529089/publications.pdf

Version: 2024-02-01

288 papers 14,927 citations

20759 60 h-index 109 g-index

291 all docs

291 docs citations

times ranked

291

11411 citing authors

#	Article	IF	CITATIONS
1	Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 2010, 35, 1420-1481.	11.8	681
2	Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 2003, 138, 447-455.	2.1	567
3	Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1803-1817.	0.9	485
4	Evolution of Polyaniline Nanotubes:Â The Oxidation of Aniline in Water. Journal of Physical Chemistry B, 2006, 110, 9461-9468.	1.2	412
5	Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 2007, 43, 2331-2341.	2.6	369
6	Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres. Macromolecules, 2008, 41, 3530-3536.	2.2	342
7	FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polymer Degradation and Stability, 2004, 86, 179-185.	2.7	340
8	The genesis of polyaniline nanotubes. Polymer, 2006, 47, 8253-8262.	1.8	295
9	Multi-wall carbon nanotubes coated with polyaniline. Polymer, 2006, 47, 5715-5723.	1.8	286
10	Poly(<scp> </scp> -lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2008, 19, 740-750.	1.8	277
11	Polyaniline nanotubes: conditions of formation. Polymer International, 2006, 55, 31-39.	1.6	270
12	Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochimica Acta, 2014, 122, 28-38.	2.6	255
13	Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water $\hat{a} \in \text{FTIR}$ and Raman spectroscopic studies. Polymer Degradation and Stability, 2008, 93, 2147-2157.	2.7	215
14	The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 2008, 39, 1375-1387.	1.2	211
15	Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 2003, 44, 1353-1358.	1.8	199
16	The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 2009, 94, 929-938.	2.7	167
17	The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer, 2009, 50, 50-56.	1.8	158
18	Polyaniline prepared in the presence of various acids: a conductivity study. Polymer International, 2004, 53, 294-300.	1.6	157

#	Article	IF	Citations
19	Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Advances, 2016, 6, 88382-88391.	1.7	145
20	Solid-State Protonation and Electrical Conductivity of Polyaniline. Macromolecules, 1998, 31, 2218-2222.	2,2	137
21	Aniline oligomers <i>versus</i> polyaniline. Polymer International, 2012, 61, 240-251.	1.6	137
22	Polypyrrole nanotubes: mechanism of formation. RSC Advances, 2014, 4, 1551-1558.	1.7	134
23	Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Applied Surface Science, 2017, 396, 169-176.	3.1	133
24	Conducting carbonized polyaniline nanotubes. Nanotechnology, 2009, 20, 245601.	1.3	131
25	The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 2011, 161, 1122-1129.	2.1	131
26	The stability of polyaniline in strongly alkaline or acidic aqueous media. Polymer Degradation and Stability, 2008, 93, 592-600.	2.7	130
27	Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 2012, 66, .	1.0	127
28	d-Mannose-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2007, 18, 635-644.	1.8	125
29	Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 2006, 91, 114-121.	2.7	124
30	Conducting polypyrrole nanotubes: a review. Chemical Papers, 2018, 72, 1563-1595.	1.0	112
31	Control of polyaniline conductivity and contact angles by partial protonation. Polymer International, 2008, 57, 66-69.	1.6	109
32	Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Synthetic Metals, 2004, 143, 153-161.	2.1	108
33	Polyaniline complex with fullerene C60. European Polymer Journal, 2000, 36, 2321-2326.	2.6	104
34	Investigations of the hydrophobic and hydrophilic interactions in polymer–water systems by ATR FTIR and Raman spectroscopy. Vibrational Spectroscopy, 2006, 42, 278-283.	1.2	104
35	Polypyrrole nanotubes: The tuning of morphology and conductivity. Polymer, 2017, 113, 247-258.	1.8	102
36	In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 2006, 515, 1640-1646.	0.8	101

#	Article	IF	Citations
37	In-situ polymerized polyaniline films. Synthetic Metals, 2002, 129, 29-37.	2.1	100
38	Fluorescent magnetic nanoparticles for biomedical applications. Journal of Materials Chemistry, 2011, 21, 7630.	6.7	99
39	Synthesis, Characterization, and Electrochemistry of Nanotubular Polypyrrole and Polypyrrole-Derived Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 14770-14784.	1.5	98
40	MNDO-PM3 Study of the Early Stages of the Chemical Oxidative Polymerization of Aniline. Collection of Czechoslovak Chemical Communications, 2006, 71, 1407-1426.	1.0	94
41	Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 2008, 108, 318-333.	1.0	92
42	Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes. Nanotechnology, 2008, 19, 135606.	1.3	92
43	Brominated Polyaniline. Chemistry of Materials, 2001, 13, 4083-4086.	3.2	90
44	Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement. Journal of Materials Chemistry C, 2017, 5, 4236-4245.	2.7	90
45	Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline. Synthetic Metals, 1999, 101, 840-841.	2.1	88
46	Chemical Oxidative Polymerization of Safranines. Journal of Physical Chemistry B, 2007, 111, 2188-2199.	1.2	88
47	Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 2008, 158, 200-211.	2.1	84
48	Surface Polymerization of Aniline on Silica Gel. Langmuir, 2003, 19, 3013-3018.	1.6	82
49	The role of water in structural changes of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) studied by FTIR, Raman spectroscopy and quantum chemical calculations. Vibrational Spectroscopy, 2009, 51, 44-51.	1.2	81
50	Poly(<i>N</i> , <i>N</i> -dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2009, 20, 283-294.	1.8	80
51	Polymerization of Aniline on Polyaniline Membranes. Journal of Physical Chemistry B, 2007, 111, 2440-2448.	1.2	79
52	Properties of amine-containing coatings prepared by plasma polymerization. Journal of Applied Polymer Science, 2004, 92, 979-990.	1.3	78
53	Poly(aniline-co-pyrrole): powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synthetic Metals, 2004, 146, 29-36.	2.1	78
54	Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum, 2005, 77, 131-137.	1.6	77

#	Article	IF	CITATIONS
55	Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer, 2006, 47, 42-48.	1.8	76
56	In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerisation. Synthetic Metals, 2005, 154, 1-4.	2.1	72
57	Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cm ^{â^1} limit. Polymer International, 2009, 58, 872-879.	1.6	71
58	Chemical Oxidative Polymerization of Aminodiphenylamines. Journal of Physical Chemistry B, 2008, 112, 6976-6987.	1.2	67
59	Flame-retardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 2005, 98, 2347-2354.	1.3	63
60	Conformational transition in polyaniline films – Spectroscopic and conductivity studies of ageing. Polymer Degradation and Stability, 2008, 93, 428-435.	2.7	62
61	Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. Journal of Hazardous Materials, 2022, 435, 129004.	6.5	62
62	The influence of pulse parameters on film composition during pulsed plasma polymerization of diaminocyclohexane. Surface and Coatings Technology, 2003, 174-175, 863-866.	2.2	60
63	Conductivity ageing in temperature-cycled polyaniline. Polymer Degradation and Stability, 2002, 78, 393-401.	2.7	58
64	Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. Thin Solid Films, 2011, 519, 5933-5941.	0.8	58
65	Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synthetic Metals, 2016, 214, 14-22.	2.1	58
66	Polyaniline Cryogels Supported with Poly(vinyl alcohol): Soft and Conducting. Macromolecules, 2017, 50, 972-978.	2.2	58
67	Resonance Raman Spectroscopy of Conducting Polypyrrole Nanotubes: Disordered Surface versus Ordered Body. Journal of Physical Chemistry A, 2018, 122, 9298-9306.	1.1	55
68	Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 2008, 62, .	1.0	54
69	Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta, 2011, 56, 3580-3585.	2.6	54
70	Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity. Materials Chemistry and Physics, 2017, 194, 206-218.	2.0	54
71	Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. Journal of Magnetism and Magnetic Materials, 2009, 321, 1539-1547.	1.0	53
72	Oxidation of Aniline with Silver Nitrate Accelerated byp-Phenylenediamine: A New Route to Conducting Composites. Macromolecules, 2010, 43, 10406-10413.	2.2	53

#	Article	IF	Citations
73	Polyanilineâ€"silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 2011, 52, 5947-5952.	1.8	53
74	Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International, 2010, 59, 437-446.	1.6	52
75	The carbonization of thin polyaniline films. Thin Solid Films, 2012, 520, 6088-6094.	0.8	50
76	Purification of a conducting polymer, polyaniline, for biomedical applications. Synthetic Metals, 2014, 195, 286-293.	2.1	50
77	Electrorheology of aniline oligomers. Colloid and Polymer Science, 2013, 291, 2079-2086.	1.0	49
78	Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer, 2011, 52, 2474-2484.	1.8	48
79	Coating of zinc ferrite particles with a conducting polymer, polyaniline. Journal of Colloid and Interface Science, 2006, 298, 87-93.	5.0	47
80	NMR Investigation of Aniline Oligomers Produced in the Early Stages of Oxidative Polymerization of Aniline. Journal of Physical Chemistry B, 2009, 113, 6666-6673.	1.2	47
81	The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. Applied Surface Science, 2015, 356, 737-741.	3.1	47
82	Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 2009, 63, .	1.0	46
83	Flame retardancy afforded by polyaniline deposited on wood. Journal of Applied Polymer Science, 2007, 103, 24-30.	1.3	44
84	Polypyrrole/silver composites prepared by single-step synthesis. Synthetic Metals, 2013, 166, 57-62.	2.1	44
85	Detection of Aniline Oligomers on Polyaniline–Gold Interface using Resonance Raman Scattering. ACS Applied Materials & Samp; Interfaces, 2014, 6, 942-950.	4.0	44
86	Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties. Sensors, 2016, 16, 1917.	2.1	44
87	Determination of the Inelastic Mean Free Path of Electrons in Different Polyaniline Samples. Langmuir, 2000, 16, 1415-1423.	1.6	43
88	The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 2010, 64, .	1.0	43
89	Synthesis and characterization of new zirconium 4-sulfophenylphosphonates. Solid State Ionics, 2010, 181, 705-713.	1.3	43
90	Oxidative stability of polyaniline. Polymer Degradation and Stability, 2012, 97, 1026-1033.	2.7	43

#	Article	IF	Citations
91	Selfâ€Assembly of Aniline Oligomers. Chemistry - an Asian Journal, 2013, 8, 129-137.	1.7	43
92	Optimization routes for high electrical conductivity of polypyrrole nanotubes prepared in presence of methyl orange. Synthetic Metals, 2017, 230, 89-96.	2.1	43
93	Plasma polymers prepared by RF sputtering of polyethylene. Vacuum, 2003, 70, 505-509.	1.6	42
94	Structure of montmorillonite cointercalated with stearic acid and octadecylamine: Modeling, diffraction, IR spectroscopy. Journal of Colloid and Interface Science, 2006, 300, 264-269.	5.0	42
95	Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 2012, 97, 1405-1414.	2.7	42
96	Anticorrosion properties of inorganic pigments surface-modified with a polyaniline phosphate layer. Progress in Organic Coatings, 2008, 63, 209-221.	1.9	41
97	Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology. Chemical Engineering Journal, 2014, 256, 398-406.	6.6	41
98	Monodisperse magnetic composite poly(glycidyl methacrylate)/La0.75Sr0.25MnO3 microspheres by the dispersion polymerization. Polymer, 2010, 51, 3116-3122.	1.8	38
99	Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synthetic Metals, 2010, 160, 701-707.	2.1	38
100	Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer, 2019, 174, 11-17.	1.8	38
101	Characterization of glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies. Journal of Applied Polymer Science, 2001, 81, 1341-1352.	1.3	36
102	Solid-State Reduction of Silver Nitrate with Polyaniline Base Leading to Conducting Materials. ACS Applied Materials & District Samp; Interfaces, 2009, 1, 1906-1912.	4.0	36
103	The oxidation of aniline with p-benzoquinone and its impact on the preparation of the conducting polymer, polyaniline. Synthetic Metals, 2014, 192, 66-73.	2.1	36
104	Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyethylene or polypropylene. Vacuum, 2006, 81, 32-37.	1.6	35
105	The oxidative polymerization of <i>p</i> â€phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. Journal of Polymer Science Part A, 2011, 49, 3387-3403.	2.5	35
106	Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response. Sensors, 2016, 16, 498.	2.1	35
107	Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synthetic Metals, 2018, 237, 40-49.	2.1	35
108	Novel silicon carbide/polypyrrole composites; preparation and physicochemical properties. Materials Research Bulletin, 2005, 40, 749-765.	2.7	34

#	Article	lF	CITATIONS
109	Composite SiOx/fluorocarbon plasma polymer films prepared by r.f. magnetron sputtering of SiO2 and PTFE. Vacuum, 2006, 81, 38-44.	1.6	34
110	Structure and Pervaporation Properties of Poly(phenyleneâ€∢i>iso⟨ i>â€phthalamide) Membranes Modified by Fullerene C _{60< sub>. Macromolecular Materials and Engineering, 2009, 294, 432-440.}	1.7	34
111	The material combining conducting polymer and ionic liquid: Hydrogen bonding interactions between polyaniline and imidazolium salt. Synthetic Metals, 2014, 197, 168-174.	2.1	34
112	Nanocomposites with mixed electronic and protonic conduction for electrocatalysis. Russian Journal of Electrochemistry, 2007, 43, 528-536.	0.3	33
113	Polymerization of aniline in ice. Synthetic Metals, 2008, 158, 927-933.	2.1	33
114	Polyamide Membranes Modified by Carbon Nanotubes: Application for Pervaporation. Separation Science and Technology, 2009, 45, 35-41.	1.3	33
115	The carbonization of colloidal polyaniline nanoparticles to nitrogenâ€containing carbon analogues. Polymer International, 2010, 59, 875-878.	1.6	33
116	The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synthetic Metals, 2010, 160, 1479-1486.	2.1	33
117	Conducting polyaniline–montmorillonite composites. Synthetic Metals, 2010, 160, 2596-2604.	2.1	33
118	Electrorheology of polyaniline, carbonized polyaniline, and their core–shell composites. Materials Letters, 2013, 101, 90-92.	1.3	33
119	Effect of oxidant on electronic transport in polypyrrole nanotubes synthesized in the presence of methyl orange. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1147-1159.	2.4	33
120	Stem cell differentiation on conducting polyaniline. RSC Advances, 2015, 5, 68796-68805.	1.7	33
121	Characterization of C-N thin films deposited by reactive excimer laser ablation of graphite targets in nitrogen atmosphere. Thin Solid Films, 1997, 307, 54-59.	0.8	32
122	Protonation of Polyaniline with 3-Nitro-1,2,4-triazol-5-one. Chemistry of Materials, 2002, 14, 3602-3606.	3.2	32
123	Chemical bonding study of nanocrystalline diamond films prepared by plasma techniques. Thin Solid Films, 2006, 506-507, 297-302.	0.8	32
124	Polymerization of Aniline in the Solutions of Strong and Weak Acids: The Evolution of Infrared Spectra and Their Interpretation Using Factor Analysis. Applied Spectroscopy, 2007, 61, 1153-1162.	1.2	32
125	The reaction of polyaniline with iodine. Polymer, 2008, 49, 180-185.	1.8	32
126	In-situ prepared polyaniline–silver composites: Single- and two-step strategies. Electrochimica Acta, 2014, 122, 259-266.	2.6	32

#	Article	IF	CITATIONS
127	Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. Synthetic Metals, 2016, 221, 67-74.	2.1	32
128	Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer, 2018, 150, 130-137.	1.8	32
129	Intercalation of Water into Anhydrous Vanadyl Phosphate Studied by the Infrared and Raman Spectroscopies. Journal of Solid State Chemistry, 1999, 148, 197-204.	1.4	31
130	Structure analysis of montmorillonite intercalated with rhodamine B: modeling and experiment. Journal of Molecular Modeling, 2003, 9, 39-46.	0.8	31
131	Polyaniline prepared in ethylene glycol or glycerol. Polymer, 2011, 52, 1900-1907.	1.8	31
132	Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. Microporous and Mesoporous Materials, 2019, 287, 234-245.	2.2	31
133	FTIR spectroscopy of ordered polyaniline films. Synthetic Metals, 2003, 135-136, 305-306.	2.1	30
134	Oxidation of aniline in dopant-free template-free dilute reaction media. Materials Chemistry and Physics, 2011, 127, 501-510.	2.0	30
135	Magnetic poly(glycidyl methacrylate)-based microspheres prepared by suspension polymerization in the presence of modified La0.75Sr0.25MnO3 nanoparticles. European Polymer Journal, 2009, 45, 1009-1016.	2.6	29
136	Polyaniline-coated silver nanowires. Reactive and Functional Polymers, 2010, 70, 656-662.	2.0	29
137	Solid-state oxidation of aniline hydrochloride with various oxidants. Synthetic Metals, 2011, 161, 1353-1360.	2.1	29
138	Towards conducting inks: Polypyrrole–silver colloids. Electrochimica Acta, 2014, 122, 296-302.	2.6	29
139	CNx films created by combined laser deposition and r.f. discharge: XPS, FTIR and Raman analysis. Thin Solid Films, 2000, 366, 69-76.	0.8	28
140	Polyaniline/polybenzimidazole blends: Characterisation of its physico-chemical properties and gas separation behaviour. European Polymer Journal, 2016, 77, 98-113.	2.6	28
141	Preparation, surface chemistry, and electrical conductivity of novel silicon carbide/polypyrrole composites containing an anionic surfactant. Polymer Engineering and Science, 2007, 47, 1198-1206.	1.5	27
142	The composites of silver with globular or nanotubular polypyrrole: The control of silver content. Synthetic Metals, 2015, 209, 105-111.	2.1	27
143	One-Pot Preparation of Conducting Melamine/Polypyrrole/Magnetite Ferrosponge. ACS Applied Polymer Materials, 2021, 3, 1107-1115.	2.0	27
144	Rf magnetron sputtering of polypropylene. Vacuum, 2004, 75, 207-215.	1.6	26

#	Article	IF	CITATIONS
145	Synthesis and characterization of new strontium 4-carboxyphenylphosphonates. Journal of Solid State Chemistry, 2007, 180, 929-939.	1.4	26
146	Thermally treated polyaniline/polybenzimidazole blend membranes: Structural changes and gas transport properties. Journal of Membrane Science, 2017, 537, 315-322.	4.1	26
147	The ageing of polypyrrole nanotubes synthesized with methyl orange. European Polymer Journal, 2017, 96, 176-189.	2.6	26
148	New strontium phenylphosphonate: synthesis and characterization. Solid State Sciences, 2006, 8, 1380-1385.	1.5	25
149	The polymerization of aniline at a solution–gelatin gel interface. European Polymer Journal, 2009, 45, 668-673.	2.6	25
150	Monodisperse macroporous poly(glycidyl methacrylate) microspheres coated with silica: Design, preparation and characterization. Reactive and Functional Polymers, 2014, 77, 11-17.	2.0	25
151	Dye-stimulated control of conducting polypyrrole morphology. RSC Advances, 2017, 7, 51495-51505.	1.7	25
152	Characterization of carbon nitride films prepared by laser reactive ablation deposition. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 747-752.	0.8	24
153	Magnetic poly(<i>N</i> à€propargylacrylamide) microspheres: Preparation by precipitation polymerization and use in model click reactions. Journal of Polymer Science Part A, 2011, 49, 4820-4829.	2.5	24
154	Raman spectroscopy and DFT calculations of PEDOT:PSS in a dipolar field. Physical Chemistry Chemical Physics, 2021, 24, 541-550.	1.3	24
155	1H NMR and IR study of temperature-induced phase transition of negatively charged poly(N-isopropylmethacrylamide-co-sodium methacrylate) copolymers in aqueous solutions. European Polymer Journal, 2007, 43, 5001-5009.	2.6	23
156	Reprotonated polyanilines: The stability of conductivity at elevated temperature. Polymer Degradation and Stability, 2014, 102, 67-73.	2.7	23
157	Highly conducting 1-D polypyrrole prepared in the presence of safranin. Journal of Materials Chemistry C, 2020, 8, 12140-12147.	2.7	22
158	Conversion of conducting polypyrrole nanostructures to nitrogen-containing carbons and its impact on the adsorption of organic dye. Materials Advances, 2021, 2, 706-717.	2.6	22
159	Effect of crosslinking on the properties of composites based on LDPE and conducting organic filler. European Polymer Journal, 2006, 42, 2379-2388.	2.6	21
160	Electrochemical oxidative polymerization of sodium 4-amino-3-hydroxynaphthalene-1-sulfonate and structural characterization of polymeric products. Reactive and Functional Polymers, 2006, 66, 1670-1683.	2.0	21
161	Microwave synthesis: An alternative approach to synthesize conducting end-capped polymers. Polymer, 2011, 52, 33-39.	1.8	21
162	Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology. Reactive and Functional Polymers, 2017, 120, 30-37.	2.0	21

#	Article	IF	Citations
163	The preparation of conducting polyaniline–silver and poly(p-phenylenediamine)–silver nanocomposites in liquid and frozen reaction mixtures. Journal of Solid State Electrochemistry, 2011, 15, 2361-2368.	1.2	20
164	Transformation of Oligoaniline Microspheres to Platelike Nitrogen-Containing Carbon. Journal of Physical Chemistry C, 2013, 117, 2289-2299.	1.5	20
165	Water/Ethanol Displacement Reactions in Vanadyl Phosphate. European Journal of Inorganic Chemistry, 1999, 1999, 2289-2294.	1.0	19
166	Properties and morphology of polypyrrole containing a surfactant. Synthetic Metals, 2003, 135-136, 437-438.	2.1	19
167	The Use of Hydrophilic Poly(<i>N</i> , <i>N</i> -dimethylacrylamide) for Promoting Engulfment of Magnetic γ-Fe ₂ O ₃ Nanoparticles by Mammalian Cells. Journal of Biomedical Nanotechnology, 2013, 9, 479-491.	0.5	19
168	Blood coagulation and platelet adhesion on polyaniline films. Colloids and Surfaces B: Biointerfaces, 2015, 133, 278-285.	2.5	19
169	Phosphorus and nitrogen-containing carbons obtained by the carbonization of conducting polyaniline complex with phosphites. Electrochimica Acta, 2017, 246, 443-450.	2.6	19
170	The effect of a polypyrrole coating on the thermal stability of microporous polyethylene membranes. European Polymer Journal, 2003, 39, 647-654.	2.6	18
171	3,5-Dinitrosalicylic acid-assisted synthesis of self-assembled polyaniline nanorods. Materials Letters, 2010, 64, 2337-2340.	1.3	18
172	Surface-Initiated Polymerization of 2-Hydroxyethyl Methacrylate from Heterotelechelic Oligoperoxide-Coated \hat{I}^3 -Fe ₂ O ₃ Nanoparticles and their Engulfment by Mammalian Cells. Chemistry of Materials, 2011, 23, 2637-2649.	3.2	18
173	Behavior of Tin-Based "Super-POSS―Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules, 2014, 47, 4266-4287.	2.2	18
174	Electrorheology of polyindole. Polymer, 2021, 217, 123448.	1.8	18
175	Structure Analysis of Vanadyl Phosphate Intercalated with Acetone. Journal of Solid State Chemistry, 2000, 150, 356-362.	1.4	17
176	Synthesis and Characterization of Vanadyl Phosphate Intercalated with Dioxane, Trioxane, and 18-Crown-6. Chemistry of Materials, 2002, 14, 2788-2795.	3.2	17
177	Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films. Polymer Degradation and Stability, 2006, 91, 2786-2792.	2.7	17
178	Conducting composites prepared by the reduction of silver ions with poly(<i>p</i> phenylenediamine). Polymer International, 2015, 64, 496-504.	1.6	17
179	Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation. Chemical Papers, 2015, 69, .	1.0	17
180	Semiconducting materials from oxidative coupling of phenylenediamines under various acidic conditions. Materials Chemistry and Physics, 2018, 205, 423-435.	2.0	17

#	Article	IF	Citations
181	Hydrogen and nitrogen bonding in silicon nitride layers deposited by laser reactive ablation: Infrared and xâ€ray photoelectron study. Applied Physics Letters, 1995, 67, 3269-3271.	1.5	16
182	The polymerization of aniline in polystyrene latex particles. Synthetic Metals, 2010, 160, 1598-1602.	2.1	16
183	Synchrotron X-ray scattering reveals early-stage crystallinity during the self-assembly of polyaniline nanotubes with rectangular cross-sections. Synthetic Metals, 2012, 161, 2739-2742.	2.1	16
184	Effect of O-methyl-Î ² -cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals. Colloids and Surfaces B: Biointerfaces, 2017, 149, 64-71.	2.5	16
185	Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydrate Polymers, 2021, 253, 117244.	5.1	16
186	Study of Host–Guest Interactions in Intercalate Zr(HPO4)2·2CH3CH2OH using a Combination of Vibration Spectroscopy and Molecular Simulations. Journal of Solid State Chemistry, 1999, 145, 1-9.	1.4	15
187	The Use of Oligoperoxide-Coated Magnetic Nanoparticles to Label Stem Cells. Journal of Biomedical Nanotechnology, 2011, 7, 384-394.	0.5	15
188	In situ polymerized polyaniline films: The top and the bottom. Synthetic Metals, 2012, 162, 2401-2405.	2.1	15
189	Influence of ethanol on the chain-ordering of carbonised polyaniline. Chemical Papers, 2013, 67, .	1.0	15
190	Colloidal dispersions of conducting copolymers of aniline and $\langle i \rangle p \langle i \rangle$ -phenylenediamine for films with enhanced conductometric sensitivity to temperature. Journal of Materials Chemistry C, 2017, 5, 1668-1674.	2.7	15
191	Interfaced conducting polymers. Synthetic Metals, 2017, 224, 109-115.	2.1	15
192	Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Applied Surface Science, 2019, 492, 497-503.	3.1	15
193	One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in the Microwave Region. International Journal of Molecular Sciences, 2020, 21, 8814.	1.8	15
194	FTIR study of polyaniline–fullerene complex. Synthetic Metals, 2001, 121, 1117-1118.	2.1	14
195	Intercalation of Cyclic Ethers into Vanadyl Phosphate. Chemistry - A European Journal, 2002, 8, 1703-1709.	1.7	14
196	NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 2011, 60, 1296-1302.	1.6	14
197	Tin-based "super-POSS―building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer, 2014, 55, 3498-3515.	1.8	14
198	Conducting polymer and ionic liquid: Improved thermal stability of the material – A spectroscopic study. Polymer Degradation and Stability, 2014, 109, 27-32.	2.7	14

#	Article	IF	CITATIONS
199	Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, inÂoxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. Polymer Degradation and Stability, 2015, 118, 147-166.	2.7	14
200	Structure and properties of polyaniline interacting with H-phosphonates. Synthetic Metals, 2017, 232, 79-86.	2.1	14
201	Carbogels: carbonized conducting polyaniline/poly(vinyl alcohol) aerogels derived from cryogels for electrochemical capacitors. Journal of Materials Chemistry A, 2019, 7, 1785-1796.	5.2	14
202	Intercalation of Ketones in Vanadyl Phosphate and Isostructural Hosts. Collection of Czechoslovak Chemical Communications, 1999, 64, 1975-1979.	1.0	13
203	Carbon nitride layers created by laser deposition combined with RF discharge. Diamond and Related Materials, 2000, 9, 548-551.	1.8	13
204	Properties and thermal decomposition of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Designed Monomers and Polymers, 2004, 7, 633-646.	0.7	13
205	New barium 4-carboxyphenylphosphonates: Synthesis, characterization and interconversions. Solid State Sciences, 2008, 10, 1533-1542.	1.5	13
206	Conducting materials prepared by the oxidation of p-phenylenediamine with p-benzoquinone. Journal of Solid State Electrochemistry, 2015, 19, 2653-2664.	1.2	13
207	Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline. Carbon, 2016, 109, 836-842.	5.4	13
208	2â∈Hydroxyethyl Methacrylate Hydrogels for Local Drug Delivery: Study of Topotecan and Vincristine Sorption/Desorption Kinetics and Polymerâ€Drug Interaction by ATRâ€FTIR Spectroscopy. Macromolecular Chemistry and Physics, 2021, 222, 2100086.	1.1	13
209	Montmorillonite and Beidellite Intercalated with Tetramethylammonium Cations. Journal of Molecular Modeling, 2000, 6, 600-607.	0.8	12
210	New composite systems on the base of polyethylene porous films covered by polypyrrole and polyacrylic acid. Journal of Applied Polymer Science, 2005, 97, 1410-1417.	1.3	12
211	Synthesis and characterization of copper 4-carboxyphenylphosphonates. Journal of Solid State Chemistry, 2009, 182, 3155-3161.	1.4	12
212	Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chemical Papers, 2013, 67, .	1.0	12
213	Interaction of polyaniline film with dibutyl phosphonate versus phosphite: Enhanced thermal stability. Polymer Degradation and Stability, 2016, 134, 357-365.	2.7	12
214	Effect of nanodiamond additives on the structure and gasâ€transport properties of a poly(phenylene–isophtalamide) matrix. Journal of Applied Polymer Science, 2018, 135, 46320.	1.3	12
215	Polypyrrole/gelatin cryogel as a precursor for a macroporous conducting polymer. Reactive and Functional Polymers, 2020, 157, 104751.	2.0	12
216	Conducting polypyrrole-coated macroporous melamine sponges: a simple toy or an advanced material?. Chemical Papers, 2021, 75, 5035-5055.	1.0	12

#	Article	IF	Citations
217	Pressure-Sensitive Conducting and Antibacterial Materials Obtained by <i>in Situ</i> Dispersion Coating of Macroporous Melamine Sponges with Polypyrrole. ACS Omega, 2021, 6, 20895-20901.	1.6	12
218	Silica-Coated Î ³ -Fe₂O₃ Nanoparticles: Preparation and Engulfment by Mammalian Macrophages. Journal of Nanopharmaceutics and Drug Delivery, 2013, 1, 182-192.	0.3	12
219	Solid manganese dioxide as heterogeneous oxidant of aniline in the preparation of conducting polyaniline or polyaniline/manganese dioxide composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128298.	2.3	12
220	Polyaniline composites with fullerene C60. Physics of the Solid State, 2002, 44, 574-575.	0.2	11
221	Magnetic poly(glycidyl methacrylate) particles prepared in the presence of surfaceâ€modified γâ€Fe ₂ O ₃ . Journal of Polymer Science Part A, 2009, 47, 4982-4994.	2.5	11
222	Intercalation chemistry of zirconium 4-sulfophenylphosphonate. Journal of Solid State Chemistry, 2013, 208, 58-64.	1.4	11
223	Charge transport and dielectric relaxation processes in aniline-based oligomers. Synthetic Metals, 2014, 192, 37-42.	2.1	11
224	Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. Colloid and Polymer Science, 2020, 298, 319-325.	1.0	11
225	Reduction of silver ions to silver with polyaniline/poly(vinyl alcohol) cryogels and aerogels. Chemical Papers, 2018, 72, 1619-1628.	1.0	10
226	The interaction of thin polyaniline films with various Hâ€phosphonates: Spectroscopy and quantum chemical calculations. Journal of Applied Polymer Science, 2018, 135, 46728.	1.3	10
227	Microcomposites of zirconium phosphonates with a conducting polymer, polyaniline: Preparation, spectroscopic study and humidity sensing. Journal of Solid State Chemistry, 2019, 276, 285-293.	1.4	10
228	Comparison of carbonized and activated polypyrrole globules, nanofibers, and nanotubes as conducting nanomaterials and adsorbents of organic dye. Carbon Trends, 2021, 4, 100068.	1.4	10
229	Conducting and Magnetic Composites Polypyrrole Nanotubes/Magnetite Nanoparticles: Application in Magnetorheology. ACS Applied Nano Materials, 2021, 4, 2247-2256.	2.4	10
230	Application-relevant characterization of magnetron-sputtered carbon nitride films. Diamond and Related Materials, 1999, 8, 1857-1862.	1.8	9
231	Intercalation of ³ -Butyrolactone into Vanadyl Phosphate and Niobyl Arsenate. European Journal of Inorganic Chemistry, 2004, 2004, 570-574.	1.0	9
232	Temperature- and humidity-related degradation of conducting polyaniline films. Macromolecular Symposia, 2004, 212, 447-454.	0.4	9
233	The influence of tungsten compounds on the synthesis and properties of polyaniline. Polymer International, 2005, 54, 1606-1612.	1.6	9
234	Organic Nanocolloidal Polyaniline Dispersions Containing Fullerene. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 447-455.	1.0	9

#	Article	IF	CITATIONS
235	Chemical oxidative polymerization of benzocaine. Reactive and Functional Polymers, 2011, 71, 704-712.	2.0	9
236	Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. Colloids and Surfaces B: Biointerfaces, 2017, 157, 309-316.	2.5	9
237	Oxidation of pyrrole with $\langle i \rangle p \langle i \rangle$ -benzoquinone to semiconducting products and their application in electrorheology. New Journal of Chemistry, 2018, 42, 10167-10176.	1.4	9
238	Conducting composite cryogels based on poly(aniline-co-p-phenylenediamine) supported by poly(vinyl) Tj ETQ	q0 0 0 rgBT 2.1	/Oyerlock 10
239	Adsorption of organic dyes on macroporous melamine sponge incorporating conducting polypyrrole nanotubes. Journal of Applied Polymer Science, 2022, 139, .	1.3	9
240	Polypyrrole-Coated Melamine Sponge as a Precursor for Conducting Macroporous Nitrogen-Containing Carbons. Coatings, 2022, 12, 324.	1.2	9
241	Physical crosslinking effects in α,ï‰-dihydroxy terminated polybutadienes. Polymer, 2007, 48, 2079-2086.	1.8	8
242	In SituInfrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions. Journal of Physical Chemistry B, 2014, 118, 141212144725004.	1.2	8
243	Carbon Materials Derived from Poly(aniline-co-p-phenylenediamine) Cryogels. Polymers, 2020, 12, 11.	2.0	8
244	Pulsed laser deposition of CN films: role of r.f. nitrogen plasma activation for the film structure formation. Diamond and Related Materials, 2002, 11, 1223-1226.	1.8	7
245	Intercalates of Vanadyl Phosphate with Aliphatic Nitriles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 43, 95-99.	1.6	7
246	Vanadyl phosphate intercalated with dimethyl sulfoxide. Journal of Physics and Chemistry of Solids, 2006, 67, 956-960.	1.9	7
247	Chemical oxidative polymerization of ethacridine. Reactive and Functional Polymers, 2012, 72, 25-35.	2.0	7
248	Gas transport properties of novel mixed matrix membranes made of titanate nanotubes and PBI or PPO. Desalination and Water Treatment, 2014, , 1-9.	1.0	7
249	High-frequency dielectric response of polyaniline pellets as nanocomposites of metallic emeraldine salt and dielectric base. Synthetic Metals, 2015, 209, 561-569.	2.1	7
250	Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension. Scientific Reports, 2017, 7, 15068.	1.6	7
251	Effect of 1,3-phenylenediamine concentration on the properties of poly(aniline-co-1,3-phenylenediamine) cryogels. Materials Letters, 2018, 229, 68-70.	1.3	7
252	Polyaniline–zirconium phosphonate composites: Thermal stability and spectroscopic study. Journal of Physics and Chemistry of Solids, 2020, 147, 109634.	1.9	7

#	Article	IF	CITATIONS
253	Conducting polyaniline prepared in the solutions of formic acid: Does functionalization with carboxyl groups occur? Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 235, 118300.	2.0	7
254	Crystal structure analysis of two crystalline bis(ï‰-hydroxyalkoxy)biphenyls using a combination of powder diffraction, IR spectroscopy and molecular simulation. Journal of Synchrotron Radiation, 1999, 6, 1035-1043.	1.0	6
255	Intercalates of Vanadyl Phosphate with Dinitriles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 45, 235-239.	1.6	6
256	Preparation of conducting polysiloxane/polyaniline composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
257	RAFT of sulfobetaine for modifying poly(glycidyl methacrylate) microspheres to reduce nonspecific protein adsorption. Journal of Polymer Science Part A, 2015, 53, 2273-2284.	2.5	6
258	Effect of initial freezing temperature and comonomer concentration on the properties of poly(aniline-co-m-phenylenediamine) cryogels supported by poly(vinyl alcohol). Colloid and Polymer Science, 2020, 298, 293-301.	1.0	6
259	Nitrogen-containing carbon enriched with tungsten atoms prepared by carbonization of polyaniline. Chemical Papers, 2021, 75, 5153-5161.	1.0	6
260	Conducting polypyrrole and polypyrrole/manganese dioxide composites prepared with a solid sacrificial oxidant of pyrrole. Synthetic Metals, 2021, 278, 116807.	2.1	6
261	A Study of the Hydration and Dehydration of Vanadyl Arsenate by X-ray Diffraction Analysis, Infrared and Raman Spectroscopy. European Journal of Inorganic Chemistry, 2000, 2000, 895-900.	1.0	5
262	Analysis of annealed thin polymer films prepared from dichloro(methyl)phenylsilane by plasma polymerization. Journal of Applied Polymer Science, 2001, 82, 2106-2112.	1.3	5
263	Intercalates of Vanadyl Phosphate with Unsaturated Alcohols. European Journal of Inorganic Chemistry, 2001, 2001, 713-719.	1.0	5
264	Strontium Methylphosphonate Trihydrate: An Example of a New Class of Host Materials for Intercalation Reactions $\hat{a} \in \text{Synthesis}$, Structure and Intercalation Behavior. European Journal of Inorganic Chemistry, 2011, 2011, 850-859.	1.0	5
265	Spectroscopic study of the highly homogeneous polyaniline film formation on gold support. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 152, 294-303.	2.0	5
266	Infrared and photoelectron spectroscopy of semi-insulating silicon layers. Journal of Non-Crystalline Solids, 1998, 227-230, 911-915.	1.5	4
267	Phase transitions in molecular crystal 4,4′-bis(6-hydroxy-1-hexyloxy)biphenyl studied by molecular dynamics simulations and IR spectroscopy. Journal of Molecular Structure, 2001, 559, 209-217.	1.8	4
268	Vanadyl Phosphate Intercalated with Diethyl Ether. European Journal of Inorganic Chemistry, 2004, 2004, 2493-2497.	1.0	4
269	Intercalation of cyclic ketones into vanadyl phosphate. Journal of Solid State Chemistry, 2005, 178, 314-320.	1.4	4
270	Suspension polymerization of aniline hydrochloride in nonâ€aqueous media. Polymer International, 2011, 60, 794-797.	1.6	4

#	Article	IF	Citations
271	Effect of sterilization techniques on the conductivity of polyaniline and polypyrrole. Synthetic Metals, 2021, 282, 116937.	2.1	4
272	Poly(2-bromoaniline) and Its Colloidal Dispersions. Collection of Czechoslovak Chemical Communications, 2002, 67, 393-404.	1.0	3
273	Intercalates of Vanadyl Phosphate with Benzonitrile and Tolunitrile. European Journal of Inorganic Chemistry, 2003, 2003, 3662-3667.	1.0	3
274	Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids. Chemical Papers, 2013, 67, .	1.0	3
275	Temperature dependence of the intensity of fluorescence of poly(n-vinylcarbazole) films. Polymer Bulletin, 1983, 9, 52-59.	1.7	2
276	Time-resolved photoluminescence study of AgCl:Cd2+crystalline foils: excitation energy transfer. Journal of Physics Condensed Matter, 1995, 7, 433-446.	0.7	2
277	Thermal Behavior of Tetrahydropyran-Intercalated VOPO4: Structural and Dynamics Study. European Journal of Inorganic Chemistry, 2007, 2007, 444-451.	1.0	2
278	Cerium(IV) phenylphosphonates and para-substituted phenylphosphonates: preparation and characterization. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 331-339.	0.9	2
279	Thermally Induced Protonation of Conducting Polyaniline Film by Dibutyl Phosphite Conversion to Phosphate. Journal of Physical Chemistry A, 2018, 122, 9492-9497.	1.1	2
280	Optimization of Electrochemical Visualization of Latent Fingerprints with Poly(Neutral Red) on Brass Surfaces. Polymers, 2021, 13, 3220.	2.0	2
281	Nanostructural composites of phthalocyanine and metals. European Physical Journal D, 1997, 47, 461-465.	0.4	1
282	Host-guest Interactions in Intercalates Zr(HPO 4) 2 \hat{A} -2C 2 H 5 OH and VOPO 4 \hat{A} -2C 2 H 5 OH. Journal of Molecular Modeling, 1998, 4, 284-293.	0.8	1
283	Molecular dynamics and IR spectroscopy in investigation of phase transitions in molecular crystal 4,4'-bis(11-hydroxy-1-undecyloxy)biphenyl. Journal of Molecular Modeling, 2002, 8, 150-155.	0.8	1
284	Intercalation of 1,2-Alkanediols into $\hat{l}\pm$ -Zirconium Hydrogenphosphate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58, 95-101.	1.6	1
285	Explosive hazards in polyaniline chemistry. Chemical Papers, 2017, 71, 387-392.	1.0	1
286	Water/Ethanol Displacement Reactions in Vanadyl Phosphate. European Journal of Inorganic Chemistry, 1999, 1999, 2289-2294.	1.0	1
287	Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate. Journal of Solid State Chemistry, 2013, 202, 93-98.	1.4	0
288	Synthesis and characterization of new barium methylphosphonates. Dalton Transactions, 2017, 46, 5363-5372.	1.6	0