Miroslava Trchova

List of Publications by Citations

Source: https://exaly.com/author-pdf/529089/miroslava-trchova-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

288 12,958 59 102 g-index

291 13,891 4 6.51 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
288	Polyaniline nanostructures and the role of aniline oligomers in their formation. <i>Progress in Polymer Science</i> , 2010 , 35, 1420-1481	29.6	606
287	Synthesis and structural study of polypyrroles prepared in the presence of surfactants. <i>Synthetic Metals</i> , 2003 , 138, 447-455	3.6	511
286	Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2011 , 83, 1803-1817	2.1	414
285	Evolution of polyaniline nanotubes: the oxidation of aniline in water. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 9461-8	3.4	391
284	Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres. <i>Macromolecules</i> , 2008 , 41, 3530-3536	5.5	324
283	Polyaniline and polypyrrole: A comparative study of the preparation. <i>European Polymer Journal</i> , 2007 , 43, 2331-2341	5.2	313
282	FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. <i>Polymer Degradation and Stability</i> , 2004 , 86, 179-185	4.7	294
281	The genesis of polyaniline nanotubes. <i>Polymer</i> , 2006 , 47, 8253-8262	3.9	276
280	Multi-wall carbon nanotubes coated with polyaniline. <i>Polymer</i> , 2006 , 47, 5715-5723	3.9	267
279	Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. <i>Bioconjugate Chemistry</i> , 2008 , 19, 740-50	6.3	254
278	Polyaniline nanotubes: conditions of formation. <i>Polymer International</i> , 2006 , 55, 31-39	3.3	253
277	Raman spectroscopy of polyaniline and oligoaniline thin films. <i>Electrochimica Acta</i> , 2014 , 122, 28-38	6.7	197
276	The chemical oxidative polymerization of aniline in water: Raman spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2008 , 39, 1375-1387	2.3	190
275	Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water IFTIR and Raman spectroscopic studies. <i>Polymer Degradation and Stability</i> , 2008 , 93, 2147-2157	4.7	186
274	Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. <i>Polymer</i> , 2003 , 44, 1353-1358	3.9	185
273	The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. <i>Polymer Degradation and Stability</i> , 2009 , 94, 929-938	4.7	151
272	The oxidation of aniline with silver nitrate to polyanilineBilver composites. <i>Polymer</i> , 2009 , 50, 50-56	3.9	146

(2006-2004)

271	Polyaniline prepared in the presence of various acids: a conductivity study. <i>Polymer International</i> , 2004 , 53, 294-300	3.3	142
270	Solid-State Protonation and Electrical Conductivity of Polyaniline. <i>Macromolecules</i> , 1998 , 31, 2218-222	2 5.5	124
269	Aniline oligomers versus polyaniline. <i>Polymer International</i> , 2012 , 61, 240-251	3.3	116
268	Conducting carbonized polyaniline nanotubes. <i>Nanotechnology</i> , 2009 , 20, 245601	3.4	116
267	D-mannose-modified iron oxide nanoparticles for stem cell labeling. <i>Bioconjugate Chemistry</i> , 2007 , 18, 635-44	6.3	114
266	Structural and conductivity changes during the pyrolysis of polyaniline base. <i>Polymer Degradation and Stability</i> , 2006 , 91, 114-121	4.7	112
265	Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. <i>Chemical Papers</i> , 2012 , 66,	1.9	111
264	The stability of polyaniline in strongly alkaline or acidic aqueous media. <i>Polymer Degradation and Stability</i> , 2008 , 93, 592-600	4.7	108
263	Polypyrrole nanotubes: mechanism of formation. <i>RSC Advances</i> , 2014 , 4, 1551-1558	3.7	107
262	The carbonization of granular polyaniline to produce nitrogen-containing carbon. <i>Synthetic Metals</i> , 2011 , 161, 1122-1129	3.6	107
261	Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. <i>Applied Surface Science</i> , 2017 , 396, 169-176	6.7	105
260	Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. <i>RSC Advances</i> , 2016 , 6, 88382-88391	3.7	102
259	In-situ polymerized polyaniline films. <i>Synthetic Metals</i> , 2002 , 129, 29-37	3.6	98
258	Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. <i>Synthetic Metals</i> , 2004 , 143, 153-161	3.6	96
257	In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. <i>Thin Solid Films</i> , 2006 , 515, 1640-1646	2.2	93
256	Polyaniline complex with fullerene C60. European Polymer Journal, 2000 , 36, 2321-2326	5.2	92
255	Fluorescent magnetic nanoparticles for biomedical applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7630		90
254	Investigations of the hydrophobic and hydrophilic interactions in polymerWater systems by ATR FTIR and Raman spectroscopy. <i>Vibrational Spectroscopy</i> , 2006 , 42, 278-283	2.1	90

253	Control of polyaniline conductivity and contact angles by partial protonation. <i>Polymer International</i> , 2008 , 57, 66-69	3.3	88
252	Brominated Polyaniline. <i>Chemistry of Materials</i> , 2001 , 13, 4083-4086	9.6	88
251	MNDO-PM3 Study of the Early Stages of the Chemical Oxidative Polymerization of Aniline. <i>Collection of Czechoslovak Chemical Communications</i> , 2006 , 71, 1407-1426		87
250	Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes. <i>Nanotechnology</i> , 2008 , 19, 135606	3.4	86
249	Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. <i>International Journal of Quantum Chemistry</i> , 2008 , 108, 318-333	2.1	85
248	Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline. <i>Synthetic Metals</i> , 1999 , 101, 840-841	3.6	83
247	Synthesis, Characterization, and Electrochemistry of Nanotubular Polypyrrole and Polypyrrole-Derived Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 14770-14784	3.8	81
246	Surface Polymerization of Aniline on Silica Gel. <i>Langmuir</i> , 2003 , 19, 3013-3018	4	81
245	Chemical oxidative polymerization of safranines. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 2188-99	3.4	79
244	Polypyrrole nanotubes: The tuning of morphology and conductivity. <i>Polymer</i> , 2017 , 113, 247-258	3.9	76
243	Polymerization of aniline on polyaniline membranes. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 2440-8	3.4	76
242	Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. <i>Synthetic Metals</i> , 2008 , 158, 200-211	3.6	75
241	The role of water in structural changes of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) studied by FTIR, Raman spectroscopy and quantum chemical calculations. <i>Vibrational Spectroscopy</i> , 2009 , 51, 44-51	2.1	73
240	Properties of amine-containing coatings prepared by plasma polymerization. <i>Journal of Applied Polymer Science</i> , 2004 , 92, 979-990	2.9	71
239	Plasma polymer films rf sputtered from PTFE under various argon pressures. <i>Vacuum</i> , 2005 , 77, 131-13	73.7	71
238	Conducting polypyrrole nanotubes: a review. <i>Chemical Papers</i> , 2018 , 72, 1563-1595	1.9	70
237	Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. <i>Bioconjugate Chemistry</i> , 2009 , 20, 283-94	6.3	68
236	Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. <i>Polymer</i> , 2006 , 47, 42-48	3.9	68

(2010-2004)

235	Poly(aniline-co-pyrrole): powders, films, and colloids. Thermophoretic mobility of colloidal particles. <i>Synthetic Metals</i> , 2004 , 146, 29-36	3.6	68	
234	Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4236-4245	7.1	65	
233	Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cml limit. <i>Polymer International</i> , 2009 , 58, 872-879	3.3	63	
232	In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerisation. <i>Synthetic Metals</i> , 2005 , 154, 1-4	3.6	63	
231	Chemical oxidative polymerization of aminodiphenylamines. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 6976-87	3.4	62	
230	Flame-retardant effect of polyaniline coating deposited on cellulose fibers. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 2347-2354	2.9	60	
229	Conductivity ageing in temperature-cycled polyaniline. <i>Polymer Degradation and Stability</i> , 2002 , 78, 393-	-40⁄1	58	
228	Conformational transition in polyaniline films	4.7	57	
227	The influence of pulse parameters on film composition during pulsed plasma polymerization of diaminocyclohexane. <i>Surface and Coatings Technology</i> , 2003 , 174-175, 863-866	4.4	55	
226	Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. <i>Synthetic Metals</i> , 2016 , 214, 14-22	3.6	53	
225	PolyanilineBilver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. <i>Electrochimica Acta</i> , 2011 , 56, 3580-3585	6.7	52	
224	Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 2008, 62,	1.9	52	
223	Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. <i>Thin Solid Films</i> , 2011 , 519, 5933-59	941	50	
222	PolyanilineBilver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. <i>Polymer</i> , 2011 , 52, 5947-5952	3.9	49	
221	Polyaniline Cryogels Supported with Poly(vinyl alcohol): Soft and Conducting. <i>Macromolecules</i> , 2017 , 50, 972-978	5.5	48	
220	Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 1539-1547	2.8	48	
219	PolyanilineBilver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. <i>Polymer International</i> , 2010 , 59, 437-446	3.3	48	
218	Oxidation of Aniline with Silver Nitrate Accelerated byp-Phenylenediamine: A New Route to Conducting Composites. <i>Macromolecules</i> , 2010 , 43, 10406-10413	5.5	46	

217	NMR investigation of aniline oligomers produced in the early stages of oxidative polymerization of aniline. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6666-73	3.4	46
216	Electrorheology of aniline oligomers. <i>Colloid and Polymer Science</i> , 2013 , 291, 2079-2086	2.4	45
215	Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. <i>Chemical Papers</i> , 2009 , 63,	1.9	44
214	Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. <i>Polymer</i> , 2011 , 52, 2474-2484	3.9	44
213	Purification of a conducting polymer, polyaniline, for biomedical applications. <i>Synthetic Metals</i> , 2014 , 195, 286-293	3.6	41
212	The carbonization of thin polyaniline films. <i>Thin Solid Films</i> , 2012 , 520, 6088-6094	2.2	41
211	Oxidative stability of polyaniline. <i>Polymer Degradation and Stability</i> , 2012 , 97, 1026-1033	4.7	41
210	Flame retardancy afforded by polyaniline deposited on wood. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 24-30	2.9	41
209	Synthesis and characterization of new zirconium 4-sulfophenylphosphonates. <i>Solid State Ionics</i> , 2010 , 181, 705-713	3.3	40
208	Coating of zinc ferrite particles with a conducting polymer, polyaniline. <i>Journal of Colloid and Interface Science</i> , 2006 , 298, 87-93	9.3	40
207	Determination of the Inelastic Mean Free Path of Electrons in Different Polyaniline Samples. <i>Langmuir</i> , 2000 , 16, 1415-1423	4	40
206	Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity. <i>Materials Chemistry and Physics</i> , 2017 , 194, 206-218	4.4	39
205	The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. <i>Applied Surface Science</i> , 2015 , 356, 737-741	6.7	39
204	Self-assembly of aniline oligomers. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 129-37	4.5	39
203	Polypyrrole/silver composites prepared by single-step synthesis. <i>Synthetic Metals</i> , 2013 , 166, 57-62	3.6	39
202	The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 2010, 64,	1.9	39
201	Structure of montmorillonite cointercalated with stearic acid and octadecylamine: modeling, diffraction, IR spectroscopy. <i>Journal of Colloid and Interface Science</i> , 2006 , 300, 264-9	9.3	39
200	Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology. <i>Chemical Engineering Journal</i> , 2014 , 256, 398-406	14.7	38

(2014-2008)

199	Anticorrosion properties of inorganic pigments surface-modified with a polyaniline phosphate layer. <i>Progress in Organic Coatings</i> , 2008 , 63, 209-221	4.8	38
198	Plasma polymers prepared by RF sputtering of polyethylene. <i>Vacuum</i> , 2003 , 70, 505-509	3.7	38
197	Optimization routes for high electrical conductivity of polypyrrole nanotubes prepared in presence of methyl orange. <i>Synthetic Metals</i> , 2017 , 230, 89-96	3.6	37
196	Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. <i>Polymer Degradation and Stability</i> , 2012 , 97, 1405-1414	4.7	36
195	Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. <i>ACS Applied Materials & Description of State (Note: Applied Materials & Descri</i>	9.5	36
194	Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties. <i>Sensors</i> , 2016 , 16,	3.8	36
193	Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering. <i>ACS Applied Materials & Description of Applied Materials & Description (Materials & Description of Applied Materials & Description of Applied & Description of Applied Materials & Description of Applied Materials & Description of Applied Materials & Description of Applie</i>	9.5	34
192	Novel silicon carbide/polypyrrole composites; preparation and physicochemical properties. <i>Materials Research Bulletin</i> , 2005 , 40, 749-765	5.1	34
191	The oxidative polymerization of p-phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 3387-3403	2.5	33
190	Monodisperse magnetic composite poly(glycidyl methacrylate)/La0.75Sr0.25MnO3 microspheres by the dispersion polymerization. <i>Polymer</i> , 2010 , 51, 3116-3122	3.9	33
189	Nanocomposites with mixed electronic and protonic conduction for electrocatalysis. <i>Russian Journal of Electrochemistry</i> , 2007 , 43, 528-536	1.2	33
188	Composite SiOx/fluorocarbon plasma polymer films prepared by r.f. magnetron sputtering of SiO2 and PTFE. <i>Vacuum</i> , 2006 , 81, 38-44	3.7	33
187	In-situ prepared polyanilineBilver composites: Single- and two-step strategies. <i>Electrochimica Acta</i> , 2014 , 122, 259-266	6.7	32
186	Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synthetic Metals, 2010, 160, 701-7	′9 76	32
185	The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. <i>Polymer International</i> , 2010 , 59, 875-878	3.3	32
184	Polymerization of aniline in ice. <i>Synthetic Metals</i> , 2008 , 158, 927-933	3.6	32
183	Characterization of glow-dischargellreated cellulose acetate membrane surfaces for single-layer enzyme electrode studies. <i>Journal of Applied Polymer Science</i> , 2001 , 81, 1341-1352	2.9	32
182	The oxidation of aniline with p-benzoquinone and its impact on the preparation of the conducting polymer, polyaniline. <i>Synthetic Metals</i> , 2014 , 192, 66-73	3.6	31

181	Conducting polyaniline Enontmorillonite composites. Synthetic Metals, 2010, 160, 2596-2604	3.6	31
180	Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyethylene or polypropylene. <i>Vacuum</i> , 2006 , 81, 32-37	3.7	31
179	The reaction of polyaniline with iodine. <i>Polymer</i> , 2008 , 49, 180-185	3.9	30
178	Resonance Raman Spectroscopy of Conducting Polypyrrole Nanotubes: Disordered Surface versus Ordered Body. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 9298-9306	2.8	30
177	Conducting Polymers: Polyaniline 2015 , 1-44		29
176	Oxidation of aniline in dopant-free template-free dilute reaction media. <i>Materials Chemistry and Physics</i> , 2011 , 127, 501-510	4.4	29
175	Polyamide Membranes Modified by Carbon Nanotubes: Application for Pervaporation. <i>Separation Science and Technology</i> , 2009 , 45, 35-41	2.5	29
174	Characterization of C-N thin films deposited by reactive excimer laser ablation of graphite targets in nitrogen atmosphere. <i>Thin Solid Films</i> , 1997 , 307, 54-59	2.2	29
173	Polymerization of aniline in the solutions of strong and weak acids: the evolution of infrared spectra and their interpretation using factor analysis. <i>Applied Spectroscopy</i> , 2007 , 61, 1153-62	3.1	29
172	Chemical bonding study of nanocrystalline diamond films prepared by plasma techniques. <i>Thin Solid Films</i> , 2006 , 506-507, 297-302	2.2	29
171	Protonation of Polyaniline with 3-Nitro-1,2,4-triazol-5-one. <i>Chemistry of Materials</i> , 2002 , 14, 3602-3606	9.6	29
170	Stem cell differentiation on conducting polyaniline. <i>RSC Advances</i> , 2015 , 5, 68796-68805	3.7	28
169	Electrorheology of polyaniline, carbonized polyaniline, and their core\(\begin{aligned} \text{hell composites.} \) Materials Letters, \(\begin{aligned} \text{2013}, 101, 90-92 \end{aligned} \)	3.3	28
168	The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. <i>Synthetic Metals</i> , 2010 , 160, 1479-1486	3.6	28
167	Magnetic poly(glycidyl methacrylate)-based microspheres prepared by suspension polymerization in the presence of modified La0.75Sr0.25MnO3 nanoparticles. <i>European Polymer Journal</i> , 2009 , 45, 100	9 ⁵ 1016	5 28
166	Polyaniline-coated silver nanowires. <i>Reactive and Functional Polymers</i> , 2010 , 70, 656-662	4.6	28
165	The material combining conducting polymer and ionic liquid: Hydrogen bonding interactions between polyaniline and imidazolium salt. <i>Synthetic Metals</i> , 2014 , 197, 168-174	3.6	27
164	Effect of oxidant on electronic transport in polypyrrole nanotubes synthesized in the presence of methyl orange. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2015 , 53, 1147-1159	2.6	27

163	Polyaniline prepared in ethylene glycol or glycerol. <i>Polymer</i> , 2011 , 52, 1900-1907	3.9	27
162	FTIR spectroscopy of ordered polyaniline films. <i>Synthetic Metals</i> , 2003 , 135-136, 305-306	3.6	27
161	The composites of silver with globular or nanotubular polypyrrole: The control of silver content. <i>Synthetic Metals</i> , 2015 , 209, 105-111	3.6	26
160	Synthesis and characterization of new strontium 4-carboxyphenylphosphonates. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 929-939	3.3	26
159	Preparation, surface chemistry, and electrical conductivity of novel silicon carbide/polypyrrole composites containing an anionic surfactant. <i>Polymer Engineering and Science</i> , 2007 , 47, 1198-1206	2.3	26
158	Structure analysis of montmorillonite intercalated with rhodamine B: modeling and experiment. <i>Journal of Molecular Modeling</i> , 2003 , 9, 39-46	2	26
157	Intercalation of Water into Anhydrous Vanadyl Phosphate Studied by the Infrared and Raman Spectroscopies. <i>Journal of Solid State Chemistry</i> , 1999 , 148, 197-204	3.3	26
156	Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response. <i>Sensors</i> , 2016 , 16,	3.8	26
155	Towards conducting inks: PolypyrroleBilver colloids. <i>Electrochimica Acta</i> , 2014 , 122, 296-302	6.7	25
154	New strontium phenylphosphonate: synthesis and characterization. <i>Solid State Sciences</i> , 2006 , 8, 1380-	13,845	25
153	Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. <i>Polymer</i> , 2018 , 150, 130-137	3.9	25
153 152		3.9 3.6	25
	Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the		
152	Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. <i>Synthetic Metals</i> , 2018 , 237, 40-49 Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. <i>Synthetic Metals</i> , 2016 ,	3.6	24
152 151	Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. <i>Synthetic Metals</i> , 2018 , 237, 40-49 Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. <i>Synthetic Metals</i> , 2016 , 221, 67-74	3.6	24
152 151 150	Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. <i>Synthetic Metals</i> , 2018 , 237, 40-49 Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. <i>Synthetic Metals</i> , 2016 , 221, 67-74 Solid-state oxidation of aniline hydrochloride with various oxidants. <i>Synthetic Metals</i> , 2011 , 161, 1353-Magnetic poly(N-propargylacrylamide) microspheres: Preparation by precipitation polymerization	3.6 3.6	24 24 24
152 151 150	Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. <i>Synthetic Metals</i> , 2018 , 237, 40-49 Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. <i>Synthetic Metals</i> , 2016 , 221, 67-74 Solid-state oxidation of aniline hydrochloride with various oxidants. <i>Synthetic Metals</i> , 2011 , 161, 1353-Magnetic poly(N-propargylacrylamide) microspheres: Preparation by precipitation polymerization and use in model click reactions. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 4820-4829 Structure and Pervaporation Properties of Poly(phenylene-iso-phthalamide) Membranes Modified	3.6 3.6 1360 2.5	24 24 24

145	Characterization of carbon nitride films prepared by laser reactive ablation deposition. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1995 , 76, 747-752	1.7	24
144	Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. <i>Polymer</i> , 2019 , 174, 11-17	3.9	23
143	1H NMR and IR study of temperature-induced phase transition of negatively charged poly(N-isopropylmethacrylamide-co-sodium methacrylate) copolymers in aqueous solutions. <i>European Polymer Journal</i> , 2007 , 43, 5001-5009	5.2	23
142	CNx films created by combined laser deposition and r.f. discharge: XPS, FTIR and Raman analysis. <i>Thin Solid Films</i> , 2000 , 366, 69-76	2.2	23
141	Polyaniline/polybenzimidazole blends: Characterisation of its physico-chemical properties and gas separation behaviour. <i>European Polymer Journal</i> , 2016 , 77, 98-113	5.2	22
140	Reprotonated polyanilines: The stability of conductivity at elevated temperature. <i>Polymer Degradation and Stability</i> , 2014 , 102, 67-73	4.7	22
139	Dye-stimulated control of conducting polypyrrole morphology. RSC Advances, 2017, 7, 51495-51505	3.7	21
138	Electrochemical oxidative polymerization of sodium 4-amino-3-hydroxynaphthalene-1-sulfonate and structural characterization of polymeric products. <i>Reactive and Functional Polymers</i> , 2006 , 66, 1670	-1683	21
137	Thermally treated polyaniline/polybenzimidazole blend membranes: Structural changes and gas transport properties. <i>Journal of Membrane Science</i> , 2017 , 537, 315-322	9.6	20
136	Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. <i>Microporous and Mesoporous Materials</i> , 2019 , 287, 234-245	5.3	20
135	Monodisperse macroporous poly(glycidyl methacrylate) microspheres coated with silica: Design, preparation and characterization. <i>Reactive and Functional Polymers</i> , 2014 , 77, 11-17	4.6	20
134	Transformation of Oligoaniline Microspheres to Platelike Nitrogen-Containing Carbon. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2289-2299	3.8	20
133	The preparation of conducting polyanilinelilver and poly(p-phenylenediamine)lilver nanocomposites in liquid and frozen reaction mixtures. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 2361-2368	2.6	20
132	Properties and morphology of polypyrrole containing a surfactant. Synthetic Metals, 2003, 135-136, 437	7- <u>4</u> . 3 8	19
131	Phosphorus and nitrogen-containing carbons obtained by the carbonization of conducting polyaniline complex with phosphites. <i>Electrochimica Acta</i> , 2017 , 246, 443-450	6.7	18
130	Effect of crosslinking on the properties of composites based on LDPE and conducting organic filler. <i>European Polymer Journal</i> , 2006 , 42, 2379-2388	5.2	18
129	Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology. <i>Reactive and Functional Polymers</i> , 2017 , 120, 30-37	4.6	17
128	The ageing of polypyrrole nanotubes synthesized with methyl orange. <i>European Polymer Journal</i> , 2017 , 96, 176-189	5.2	17

127	Microwave synthesis: An alternative approach to synthesize conducting end-capped polymers. <i>Polymer</i> , 2011 , 52, 33-39	3.9	17	
126	3,5-Dinitrosalicylic acid-assisted synthesis of self-assembled polyaniline nanorods. <i>Materials Letters</i> , 2010 , 64, 2337-2340	3.3	17	
125	Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films. <i>Polymer Degradation and Stability</i> , 2006 , 91, 2786-2792	4.7	17	
124	Synthesis and Characterization of Vanadyl Phosphate Intercalated with Dioxane, Trioxane, and 18-Crown-6. <i>Chemistry of Materials</i> , 2002 , 14, 2788-2795	9.6	17	
123	Blood coagulation and platelet adhesion on polyaniline films. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 133, 278-85	6	16	
122	Synchrotron X-ray scattering reveals early-stage crystallinity during the self-assembly of polyaniline nanotubes with rectangular cross-sections. <i>Synthetic Metals</i> , 2012 , 161, 2739-2742	3.6	16	
121	Water/Ethanol Displacement Reactions in Vanadyl Phosphate. <i>European Journal of Inorganic Chemistry</i> , 1999 , 1999, 2289-2294	2.3	16	
120	Hydrogen and nitrogen bonding in silicon nitride layers deposited by laser reactive ablation: Infrared and x-ray photoelectron study. <i>Applied Physics Letters</i> , 1995 , 67, 3269-3271	3.4	16	
119	Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation. <i>Chemical Papers</i> , 2015 , 69,	1.9	15	
118	Conducting composites prepared by the reduction of silver ions with poly(p-phenylenediamine). <i>Polymer International</i> , 2015 , 64, 496-504	3.3	15	
117	Surface-Initiated Polymerization of 2-Hydroxyethyl Methacrylate from Heterotelechelic Oligoperoxide-Coated Fe2O3Nanoparticles and their Engulfment by Mammalian Cells. <i>Chemistry of Materials</i> , 2011 , 23, 2637-2649	9.6	15	
116	The effect of a polypyrrole coating on the thermal stability of microporous polyethylene membranes. <i>European Polymer Journal</i> , 2003 , 39, 647-654	5.2	15	
115	Structure Analysis of Vanadyl Phosphate Intercalated with Acetone. <i>Journal of Solid State Chemistry</i> , 2000 , 150, 356-362	3.3	15	
114	Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. <i>Applied Surface Science</i> , 2019 , 492, 497-503	6.7	14	
113	Behavior of Tin-Based Super-POSSIncorporated in Different Bonding Situations in Hybrid Epoxy Resins. <i>Macromolecules</i> , 2014 , 47, 4266-4287	5.5	14	
112	The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic gamma-Fe2O3 nanoparticles by mammalian cells. <i>Journal of Biomedical Nanotechnology</i> , 2013 , 9, 479-9	1 ⁴	14	
111	The polymerization of aniline in polystyrene latex particles. <i>Synthetic Metals</i> , 2010 , 160, 1598-1602	3.6	14	
110	Highly conducting 1-D polypyrrole prepared in the presence of safranin. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12140-12147	7.1	14	

109	Effect of O-methyl-Eyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 149, 64-71	6	13
108	In situ polymerized polyaniline films: The top and the bottom. <i>Synthetic Metals</i> , 2012 , 162, 2401-2405	3.6	13
107	New barium 4-carboxyphenylphosphonates: Synthesis, characterization and interconversions. <i>Solid State Sciences</i> , 2008 , 10, 1533-1542	3.4	13
106	Intercalation of cyclic ethers into vanadyl phosphate. <i>Chemistry - A European Journal</i> , 2002 , 8, 1703-9	4.8	13
105	Carbon nitride layers created by laser deposition combined with RF discharge. <i>Diamond and Related Materials</i> , 2000 , 9, 548-551	3.5	13
104	Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline. <i>Carbon</i> , 2016 , 109, 836-842	10.4	13
103	Conversion of conducting polypyrrole nanostructures to nitrogen-containing carbons and its impact on the adsorption of organic dye. <i>Materials Advances</i> , 2021 , 2, 706-717	3.3	13
102	Semiconducting materials from oxidative coupling of phenylenediamines under various acidic conditions. <i>Materials Chemistry and Physics</i> , 2018 , 205, 423-435	4.4	13
101	Conducting materials prepared by the oxidation of p-phenylenediamine with p-benzoquinone. Journal of Solid State Electrochemistry, 2015 , 19, 2653-2664	2.6	12
100	Tin-based Buper-POSSIbuilding blocks in epoxy nanocomposites with highly improved oxidation resistance. <i>Polymer</i> , 2014 , 55, 3498-3515	3.9	12
99	Conducting polymer and ionic liquid: Improved thermal stability of the material 🖪 spectroscopic study. <i>Polymer Degradation and Stability</i> , 2014 , 109, 27-32	4.7	12
98	Structure and properties of polyaniline interacting with H-phosphonates. <i>Synthetic Metals</i> , 2017 , 232, 79-86	3.6	12
97	Synthesis and characterization of copper 4-carboxyphenylphosphonates. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 3155-3161	3.3	12
96	FTIR study of polyanilinefullerene complex. Synthetic Metals, 2001, 121, 1117-1118	3.6	12
95	Study of Host © uest Interactions in Intercalate Zr(HPO4)2DCH3CH2OH using a Combination of Vibration Spectroscopy and Molecular Simulations. <i>Journal of Solid State Chemistry</i> , 1999 , 145, 1-9	3.3	12
94	Interfaced conducting polymers. Synthetic Metals, 2017, 224, 109-115	3.6	11
93	Charge transport and dielectric relaxation processes in aniline-based oligomers. <i>Synthetic Metals</i> , 2014 , 192, 37-42	3.6	11
92	Influence of ethanol on the chain-ordering of carbonised polyaniline. <i>Chemical Papers</i> , 2013 , 67,	1.9	11

(2020-2013)

91	Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chemical Papers, 2013, 67,	1.9	11
90	The use of oligoperoxide-coated magnetic nanoparticles to label stem cells. <i>Journal of Biomedical Nanotechnology</i> , 2011 , 7, 384-94	4	11
89	Magnetic poly(glycidyl methacrylate) particles prepared in the presence of surface-modified EFe2O3. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 4982-4994	2.5	11
88	Properties and thermal decomposition of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. <i>Designed Monomers and Polymers</i> , 2004 , 7, 633-646	3.1	11
87	Polyaniline composites with fullerene C60. Physics of the Solid State, 2002, 44, 574-575	0.8	11
86	New composite systems on the base of polyethylene porous films covered by polypyrrole and polyacrylic acid. <i>Journal of Applied Polymer Science</i> , 2005 , 97, 1410-1417	2.9	11
85	Colloidal dispersions of conducting copolymers of aniline and p-phenylenediamine for films with enhanced conductometric sensitivity to temperature. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1668-16	5 7 4 ¹	10
84	Interaction of polyaniline film with dibutyl phosphonate versus phosphite: Enhanced thermal stability. <i>Polymer Degradation and Stability</i> , 2016 , 134, 357-365	4.7	10
83	Intercalation chemistry of zirconium 4-sulfophenylphosphonate. <i>Journal of Solid State Chemistry</i> , 2013 , 208, 58-64	3.3	10
82	Intercalation of Ketones in Vanadyl Phosphate and Isostructural Hosts. <i>Collection of Czechoslovak Chemical Communications</i> , 1999 , 64, 1975-1979		10
81	Silica-Coated Fe2O3 Nanoparticles: Preparation and Engulfment by Mammalian Macrophages. <i>Journal of Nanopharmaceutics and Drug Delivery</i> , 2013 , 1, 182-192		10
80	Carbogels: carbonized conducting polyaniline/poly(vinyl alcohol) aerogels derived from cryogels for electrochemical capacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1785-1796	13	9
79	Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in bxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. <i>Polymer Degradation and Stability</i> , 2015 , 118, 147-166	4.7	9
78	Reduction of silver ions to silver with polyaniline/poly(vinyl alcohol) cryogels and aerogels. <i>Chemical Papers</i> , 2018 , 72, 1619-1628	1.9	9
77	Temperature- and humidity-related degradation of conducting polyaniline films. <i>Macromolecular Symposia</i> , 2004 , 212, 447-454	0.8	9
76	Application-relevant characterization of magnetron-sputtered carbon nitride films. <i>Diamond and Related Materials</i> , 1999 , 8, 1857-1862	3.5	9
75	Polypyrrole/gelatin cryogel as a precursor for a macroporous conducting polymer. <i>Reactive and Functional Polymers</i> , 2020 , 157, 104751	4.6	9
	One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in		

73	One-Pot Preparation of Conducting Melamine/Polypyrrole/Magnetite Ferrosponge. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1107-1115	4.3	9
72	The interaction of thin polyaniline films with various H-phosphonates: Spectroscopy and quantum chemical calculations. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46728	2.9	9
71	Physical crosslinking effects in Edihydroxy terminated polybutadienes. <i>Polymer</i> , 2007 , 48, 2079-2086	3.9	8
70	Intercalation of Butyrolactone into Vanadyl Phosphate and Niobyl Arsenate. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 570-574	2.3	8
69	Conducting composite cryogels based on poly(aniline-co-p-phenylenediamine) supported by poly(vinyl alcohol). <i>Synthetic Metals</i> , 2018 , 246, 144-149	3.6	8
68	Oxidation of pyrrole with p-benzoquinone to semiconducting products and their application in electrorheology. <i>New Journal of Chemistry</i> , 2018 , 42, 10167-10176	3.6	7
67	Gas transport properties of novel mixed matrix membranes made of titanate nanotubes and PBI or PPO. <i>Desalination and Water Treatment</i> , 2014 , 1-9		7
66	Chemical oxidative polymerization of benzocaine. <i>Reactive and Functional Polymers</i> , 2011 , 71, 704-712	4.6	7
65	Organic Nanocolloidal Polyaniline Dispersions Containing Fullerene. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2006 , 14, 447-455	1.8	7
64	Intercalates of Vanadyl Phosphate with Aliphatic Nitriles. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2002 , 43, 95-99		7
63	The influence of tungsten compounds on the synthesis and properties of polyaniline. <i>Polymer International</i> , 2005 , 54, 1606-1612	3.3	7
62	Montmorillonite and Beidellite Intercalated with Tetramethylammonium Cations. <i>Journal of Molecular Modeling</i> , 2000 , 6, 600-607	2	7
61	Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. <i>Carbohydrate Polymers</i> , 2021 , 253, 11724	4 ^{10.3}	7
60	Effect of 1,3-phenylenediamine concentration on the properties of poly(aniline-co-1,3-phenylenediamine) cryogels. <i>Materials Letters</i> , 2018 , 229, 68-70	3.3	7
59	Pressure-Sensitive Conducting and Antibacterial Materials Obtained by Dispersion Coating of Macroporous Melamine Sponges with Polypyrrole. <i>ACS Omega</i> , 2021 , 6, 20895-20901	3.9	7
58	Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 157, 309-316	6	6
57	Microcomposites of zirconium phosphonates with a conducting polymer, polyaniline: Preparation, spectroscopic study and humidity sensing. <i>Journal of Solid State Chemistry</i> , 2019 , 276, 285-293	3.3	6
56	Effect of nanodiamond additives on the structure and gas-transport properties of a poly(phenyleneßophtalamide) matrix. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46320	2.9	6

55	Chemical oxidative polymerization of ethacridine. <i>Reactive and Functional Polymers</i> , 2012 , 72, 25-35	4.6	6
54	Preparation of conducting polysiloxane/polyaniline composites. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	6
53	In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 14972-81	3.4	6
52	Vanadyl phosphate intercalated with dimethyl sulfoxide. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 956-960	3.9	6
51	Intercalates of Vanadyl Phosphate with Dinitriles. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2003 , 45, 235-239		6
50	Pulsed laser deposition of CNx films: role of r.f. nitrogen plasma activation for the film structure formation. <i>Diamond and Related Materials</i> , 2002 , 11, 1223-1226	3.5	6
49	Crystal structure analysis of two crystalline bis(Ehydroxyalkoxy)biphenyls using a combination of powder diffraction, IR spectroscopy and molecular simulation. <i>Journal of Synchrotron Radiation</i> , 1999 , 6, 1035-1043	2.4	6
48	Spectroscopic study of the highly homogeneous polyaniline film formation on gold support. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016 , 152, 294-303	4.4	5
47	RAFT of sulfobetaine for modifying poly(glycidyl methacrylate) microspheres to reduce nonspecific protein adsorption. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 2273-2284	2.5	5
46	High-frequency dielectric response of polyaniline pellets as nanocomposites of metallic emeraldine salt and dielectric base. <i>Synthetic Metals</i> , 2015 , 209, 561-569	3.6	5
45	Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. <i>Colloid and Polymer Science</i> , 2020 , 298, 319-325	2.4	5
44	NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. <i>Polymer International</i> , 2011 , 60, n/a-n/a	3.3	5
43	Strontium Methylphosphonate Trihydrate: An Example of a New Class of Host Materials for Intercalation Reactions	2.3	5
42	Analysis of annealed thin polymer films prepared from dichloro(methyl)phenylsilane by plasma polymerization. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 2106-2112	2.9	5
41	Intercalates of Vanadyl Phosphate with Unsaturated Alcohols. <i>European Journal of Inorganic Chemistry</i> , 2001 , 2001, 713-719	2.3	5
40	Conducting polyaniline prepared in the solutions of formic acid: Does functionalization with carboxyl groups occur?. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2020 , 235, 118300	4.4	5
39	Electrorheology of polyindole. <i>Polymer</i> , 2021 , 217, 123448	3.9	5
38	2-Hydroxyethyl Methacrylate Hydrogels for Local Drug Delivery: Study of Topotecan and Vincristine Sorption/Desorption Kinetics and Polymer-Drug Interaction by ATR-FTIR Spectroscopy. <i>Macromolecular Chemistry and Physics</i> , 2021 , 222, 2100086	2.6	5

37	Conducting polypyrrole-coated macroporous melamine sponges: a simple toy or an advanced material?. <i>Chemical Papers</i> , 2021 , 75, 5035-5055	1.9	5
36	Polyanilinedirconium phosphonate composites: Thermal stability and spectroscopic study. <i>Journal of Physics and Chemistry of Solids</i> , 2020 , 147, 109634	3.9	4
35	Effect of initial freezing temperature and comonomer concentration on the properties of poly(aniline-co-m-phenylenediamine) cryogels supported by poly(vinyl alcohol). <i>Colloid and Polymer Science</i> , 2020 , 298, 293-301	2.4	4
34	Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension. <i>Scientific Reports</i> , 2017 , 7, 15068	4.9	4
33	Suspension polymerization of aniline hydrochloride in non-aqueous media. <i>Polymer International</i> , 2011 , 60, 794-797	3.3	4
32	Infrared and photoelectron spectroscopy of semi-insulating silicon layers. <i>Journal of Non-Crystalline Solids</i> , 1998 , 227-230, 911-915	3.9	4
31	Vanadyl Phosphate Intercalated with Diethyl Ether. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 2493-2497	2.3	4
30	Intercalation of cyclic ketones into vanadyl phosphate. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 314-3	330,	4
29	Phase transitions in molecular crystal 4,4?-bis(6-hydroxy-1-hexyloxy)biphenyl studied by molecular dynamics simulations and IR spectroscopy. <i>Journal of Molecular Structure</i> , 2001 , 559, 209-217	3.4	4
28	A Study of the Hydration and Dehydration of Vanadyl Arsenate by X-ray Diffraction Analysis, Infrared and Raman Spectroscopy. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 895-900	2.3	4
27	Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants <i>Journal of Hazardous Materials</i> , 2022 , 435, 129004	12.8	4
26	Intercalates of Vanadyl Phosphate with Benzonitrile and Tolunitrile. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3662-3667	2.3	3
25	Poly(2-bromoaniline) and Its Colloidal Dispersions. <i>Collection of Czechoslovak Chemical Communications</i> , 2002 , 67, 393-404		3
24	Comparison of carbonized and activated polypyrrole globules, nanofibers, and nanotubes as conducting nanomaterials and adsorbents of organic dye. <i>Carbon Trends</i> , 2021 , 4, 100068	О	3
23	Cerium(IV) phenylphosphonates and para-substituted phenylphosphonates: preparation and characterization. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2017 , 87, 331-339	1.7	2
22	Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids. <i>Chemical Papers</i> , 2013 , 67,	1.9	2
21	Thermal Behavior of Tetrahydropyran-Intercalated VOPO4: Structural and Dynamics Study. European Journal of Inorganic Chemistry, 2007 , 2007, 444-451	2.3	2
20	Time-resolved photoluminescence study of AgCl:Cd2+crystalline foils: excitation energy transfer. Journal of Physics Condensed Matter, 1995 , 7, 433-446	1.8	2

(2013-1983)

19	Temperature dependence of the intensity of fluorescence of poly(n-vinylcarbazole) films. <i>Polymer Bulletin</i> , 1983 , 9, 52-59	2.4	2
18	Solid manganese dioxide as heterogeneous oxidant of aniline in the preparation of conducting polyaniline or polyaniline/manganese dioxide composites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 638, 128298	5.1	2
17	Raman spectroscopy and DFT calculations of PEDOT:PSS in a dipolar field <i>Physical Chemistry Chemical Physics</i> , 2021 , 24, 541-550	3.6	2
16	Carbon Materials Derived from Poly(anilinephenylenediamine) Cryogels. <i>Polymers</i> , 2019 , 12,	4.5	2
15	Thermally Induced Protonation of Conducting Polyaniline Film by Dibutyl Phosphite Conversion to Phosphate. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 9492-9497	2.8	2
14	Conducting and Magnetic Composites Polypyrrole Nanotubes/Magnetite Nanoparticles: Application in Magnetorheology. <i>ACS Applied Nano Materials</i> , 2021 , 4, 2247-2256	5.6	2
13	Explosive hazards in polyaniline chemistry. <i>Chemical Papers</i> , 2017 , 71, 387-392	1.9	1
12	Nanostructural composites of phthalocyanine and metals. <i>European Physical Journal D</i> , 1997 , 47, 461-46	55	1
11	Intercalation of 1,2-Alkanediols into Ericonium Hydrogenphosphate. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2007 , 58, 95-101		1
10	Molecular dynamics and IR spectroscopy in investigation of phase transitions in molecular crystal 4,4'-bis(11-hydroxy-1-undecyloxy)biphenyl. <i>Journal of Molecular Modeling</i> , 2002 , 8, 150-5	2	1
9	Adsorption of organic dyes on macroporous melamine sponge incorporating conducting polypyrrole nanotubes. <i>Journal of Applied Polymer Science</i> ,52156	2.9	1
8	Nitrogen-containing carbon enriched with tungsten atoms prepared by carbonization of polyaniline. <i>Chemical Papers</i> , 2021 , 75, 5153-5161	1.9	1
7	Conducting polypyrrole and polypyrrole/manganese dioxide composites prepared with a solid sacrificial oxidant of pyrrole. <i>Synthetic Metals</i> , 2021 , 278, 116807	3.6	1
6	Water/Ethanol Displacement Reactions in Vanadyl Phosphate 1999 , 1999, 2289		1
5	Polypyrrole-Coated Melamine Sponge as a Precursor for Conducting Macroporous Nitrogen-Containing Carbons. <i>Coatings</i> , 2022 , 12, 324	2.9	1
4	Effect of sterilization techniques on the conductivity of polyaniline and polypyrrole. <i>Synthetic Metals</i> , 2021 , 282, 116937	3.6	O
3	Synthesis and characterization of new barium methylphosphonates. <i>Dalton Transactions</i> , 2017 , 46, 5363	3- <u>4</u> 5.3 ₃ 72	
2	Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate. <i>Journal of Solid State Chemistry</i> , 2013 , 202, 93-98	3.3	

Host-guest Interactions in Intercalates Zr(HPO4)2[2C2H5OH and VOPO4[2C2H5OH. *Journal of Molecular Modeling*, **1998**, 4, 284-293

2