
Zongfu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5290718/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity. MBio, 2014, 5, e00969-14.	4.1	201
2	<i>Staphylococcus aureus</i> RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annual Review of Microbiology, 2016, 70, 299-316.	7.3	153
3	Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Veterinary Microbiology, 2011, 152, 151-160.	1.9	97
4	Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. FEMS Microbiology Letters, 2011, 316, 36-43.	1.8	74
5	RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Research, 2019, 47, 9871-9887.	14.5	71
6	Immunoproteomic assay of surface proteins of <i>Streptococcus suis</i> serotype 9. FEMS Immunology and Medical Microbiology, 2008, 53, 52-59.	2.7	66
7	Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microbial Pathogenesis, 2008, 45, 159-166.	2.9	66
8	Transcriptome profiling of zebrafish infected with Streptococcus suis. Microbial Pathogenesis, 2010, 48, 178-187.	2.9	63
9	The <i>Streptococcus suis</i> transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. Rna, 2014, 20, 882-898.	3.5	59
10	Comparative Proteomic Analysis of Streptococcus suis Biofilms and Planktonic Cells That Identified Biofilm Infection-Related Immunogenic Proteins. PLoS ONE, 2012, 7, e33371.	2.5	50
11	Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105K genomic island. Gene, 2014, 535, 156-164.	2.2	45
12	Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ- like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Veterinary Microbiology, 2017, 205, 26-33.	1.9	42
13	The novel virulence-related gene stp of Streptococcus suis serotype 9 strain contributes to a significant reduction in mouse mortality. Microbial Pathogenesis, 2011, 51, 442-453.	2.9	33
14	SBP2 plays an important role in the virulence changes of different artificial mutants of Streptococcus suis. Molecular BioSystems, 2016, 12, 1948-1962.	2.9	33
15	Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model. Veterinary Microbiology, 2017, 199, 111-119.	1.9	29
16	Quantitative Proteome Analyses Identify PrfA-Responsive Proteins and Phosphoproteins in <i>Listeria monocytogenes</i> . Journal of Proteome Research, 2014, 13, 6046-6057.	3.7	28
17	Multilocus sequence typing and virulence genotyping of Streptococcus suis serotype 9 isolates revealed high genetic and virulence diversity. FEMS Microbiology Letters, 2017, 364, .	1.8	28
18	<i>Streptococcus suis</i> synthesizes deoxyadenosine and adenosine by 5'-nucleotidase to dampen host immune responses. Virulence, 2018, 9, 1509-1520.	4.4	24

Zongfu Wu

#	Article	IF	CITATIONS
19	Virulence genotyping and population analysis of Streptococcus suis serotype 2 isolates from China. Infection, Genetics and Evolution, 2015, 36, 483-489.	2.3	23
20	A novel integrative conjugative element mediates transfer of multi-drug resistance between Streptococcus suis strains of different serotypes. Veterinary Microbiology, 2019, 229, 110-116.	1.9	23
21	Identification of six novel capsular polysaccharide loci (<scp>NCL</scp>) from <i>StreptococcusÂsuis</i> multidrug resistant nonâ€typeable strains and the pathogenic characteristic of strains carrying new <scp>NCL</scp> s. Transboundary and Emerging Diseases, 2019, 66, 995-1003.	3.0	21
22	Genomic and pathogenic investigations of <i>Streptococcus suis</i> serotype 7 population derived from a human patient and pigs. Emerging Microbes and Infections, 2021, 10, 1960-1974.	6.5	20
23	A Streptococcus suis LysM domain surface protein contributes to bacterial virulence. Veterinary Microbiology, 2016, 187, 64-69.	1.9	19
24	AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection. Scientific Reports, 2016, 6, 25085.	3.3	15
25	Immunoproteomic analysis of bacterial proteins of Actinobacillus pleuropneumoniae serotype 1. Proteome Science, 2011, 9, 32.	1.7	14
26	The population structure, antimicrobial resistance, and pathogenicity of Streptococcus suis cps31. Veterinary Microbiology, 2021, 259, 109149.	1.9	14
27	The Novel Streptococcal Transcriptional Regulator XtgS Negatively Regulates Bacterial Virulence and Directly Represses PseP Transcription. Infection and Immunity, 2020, 88, .	2.2	13
28	The antimicrobial systems of <i>Streptococcus suis</i> promote niche competition in pig tonsils. Virulence, 2022, 13, 781-793.	4.4	12
29	The Truncated Major Pilin Subunit Sbp2 of the srtBCD Pilus Cluster Still Contributes to Streptococcus suis Pathogenesis in the Absence of Pilus Shaft. Current Microbiology, 2014, 69, 703-707.	2.2	11
30	Pathogenic investigations of <i>Streptococcus pasteurianus</i> , an underreported zoonotic pathogen, isolated from a diseased piglet with meningitis. Transboundary and Emerging Diseases, 2022, 69, 2609-2620.	3.0	10
31	Immunoproteomic assay of secreted proteins of Streptococcus suis serotype 9 with convalescent sera from pigs. Folia Microbiologica, 2011, 56, 423-430.	2.3	8
32	Intracranial Subarachnoidal Route of Infection for Investigating Roles of Streptococcus suis Biofilms in Meningitis in a Mouse Infection Model. Journal of Visualized Experiments, 2018, , .	0.3	8
33	Comparative genetic analyses provide clues about capsule switching in Streptococcus suis 2 strains with different virulence levels and genetic backgrounds. Microbiological Research, 2021, 250, 126814.	5.3	8
34	YSIRK-G/S-directed translocation is required for <i>Streptococcus suis</i> to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence, 2020, 11, 1539-1556.	4.4	7
35	Mac Protein is not an Essential Virulence Factor for the Virulent Reference Strain Streptococcus suis P1/7. Current Microbiology, 2017, 74, 90-96.	2.2	6
36	Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens, 2020, 9, 387.	2.8	4

Zongfu Wu

#	Article	IF	CITATIONS
37	Identification of Antigens Common to Streptococcus suis Serotypes 2 and 9 by Immunoproteomic Analysis. Journal of Integrative Agriculture, 2012, 11, 1517-1527.	3.5	1
38	Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo. Methods in Molecular Biology, 2016, 1490, 83-103.	0.9	1
39	The characteristics of population structure and antimicrobial resistance of <i>Streptococcus suis</i> serotype 8, a nonâ€negligible pathotype. Transboundary and Emerging Diseases, 2022, 69, .	3.0	1
40	Identification and Detection of Serotype-Specific Genes: Effective Serotyping of Streptococcus suis. Current Clinical Microbiology Reports, 2017, 4, 29-35.	3.4	0