Tsuyoshi Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5290663/publications.pdf

Version: 2024-02-01

471509 477307 39 904 17 29 citations h-index g-index papers 48 48 48 1080 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of a Palladium on Boron Nitride Catalyst and its Application to the Semihydrogenation of Alkynes. Advanced Synthesis and Catalysis, 2012, 354, 1264-1268.	4.3	83
2	Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chemistry, 2014, 16, 3439.	9.0	77
3	Platinum on Carbonâ€Catalyzed H–D Exchange Reaction of Aromatic Nuclei due to Isopropyl Alcoholâ€Mediated Self―Activation of Platinum Metal in Deuterium Oxide. Advanced Synthesis and Catalysis, 2013, 355, 1529-1534.	4.3	52
4	Platinum on Carbon atalyzed Hydrodefluorination of Fluoroarenes using Isopropyl Alcoholâ€Waterâ€Sodium Carbonate Combination. Advanced Synthesis and Catalysis, 2012, 354, 777-782.	4.3	42
5	H–D Exchange Deuteration of Arenes at Room Temperature. Organic Process Research and Development, 2019, 23, 648-653.	2.7	38
6	Easilyâ€Controlled Chemoselective Hydrogenation by using Palladium on Boron Nitride. ChemCatChem, 2013, 5, 2360-2366.	3.7	37
7	New Gateways to the Platinum Group Metal-Catalyzed Direct Deuterium-Labeling Method Utilizing Hydrogen as a Catalyst Activator. Chemical and Pharmaceutical Bulletin, 2018, 66, 21-28.	1.3	35
8	Continuousâ€Flow Suzukiâ€Miyaura and Mizorokiâ€Heck Reactions under Microwave Heating Conditions. Chemical Record, 2019, 19, 3-14.	5.8	31
9	Direct Deuteration of Acrylic and Methacrylic Acid Derivatives Catalyzed by Platinum on Carbon in Deuterium Oxide. Advanced Synthesis and Catalysis, 2018, 360, 2303-2307.	4.3	29
10	Aryl Boronic Esters Are Stable on Silica Gel and Reactive under Suzuki–Miyaura Coupling Conditions. Organic Letters, 2022, 24, 3510-3514.	4.6	28
11	Disiloxane Synthesis Based on Silicon–Hydrogen Bond Activation using Gold and Platinum on Carbon in Water or Heavy Water. Journal of Organic Chemistry, 2016, 81, 4190-4195.	3.2	24
12	Multiple deuteration of alkanes synergistically-catalyzed by platinum and rhodium on carbon as a mixed catalytic system. RSC Advances, 2015, 5, 13727-13732.	3.6	23
13	Mild and Direct Multiple Deuteriumâ€Labeling of Saturated Fatty Acids. Advanced Synthesis and Catalysis, 2016, 358, 3277-3282.	4.3	23
14	Microwave-Mediated Site-Selective Heating of Spherical-Carbon-Bead-Supported Platinum for the Continuous, Efficient Catalytic Dehydrogenative Aromatization of Saturated Cyclic Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 3052-3061.	6.7	21
15	Hydrogen Selfâ€Sufficient Arene Reduction to Cyclohexane Derivatives Using a Combination of Platinum on Carbon and 2â€Propanol. Advanced Synthesis and Catalysis, 2015, 357, 3667-3670.	4.3	19
16	Polyethyleneimine-Modified Polymer as an Efficient Palladium Scavenger and Effective Catalyst Support for a Functional Heterogeneous Palladium Catalyst. ACS Omega, 2019, 4, 10243-10251.	3.5	19
17	Gold-Catalyzed Cyclization of 2-Alkynylaldehyde Cyclic Acetals via Hydride Shift for the Synthesis of Indenone Derivatives. Organic Letters, 2020, 22, 1883-1888.	4.6	19
18	Mild deuteration method of terminal alkynes in heavy water using reusable basic resin. RSC Advances, 2015, 5, 92954-92957.	3.6	18

#	Article	IF	CITATIONS
19	Organocatalytic Nitroaldol Reaction Associated with Deuteriumâ€Labeling. Advanced Synthesis and Catalysis, 2018, 360, 637-641.	4.3	15
20	Development of Titanium Dioxide-Supported Pd Catalysts for Ligand-Free Suzuki–Miyaura Coupling of Aryl Chlorides. Catalysts, 2019, 9, 461.	3 . 5	13
21	Development of Carbonâ€Neutral Celluloseâ€6upported Heterogeneous Palladium Catalysts for Chemoselective Hydrogenation. ChemCatChem, 2020, 12, 4052-4058.	3.7	13
22	Application of Thiol-Modified Dual-Pore Silica Beads as a Practical Scavenger of Leached Palladium Catalyst in C–C Coupling Reactions. Organic Process Research and Development, 2019, 23, 462-469.	2.7	12
23	Hydroquinone and benzoquinone-catalyzed aqueous Knoevenagel condensation. Organic and Biomolecular Chemistry, 2020, 18, 6594-6597.	2.8	11
24	Efficient Continuous-Flow H–D Exchange Reaction of Aromatic Nuclei in D2O/2-PrOH Mixed Solvent in a Catalyst Cartridge Packed with Platinum on Carbon Beads. Bulletin of the Chemical Society of Japan, 2021, 94, 600-605.	3.2	11
25	Birch-Type Reduction of Arenes in 2-Propanol Catalyzed by Zero-Valent Iron and Platinum on Carbon. ACS Omega, 2019, 4, 11522-11531.	3. 5	9
26	<i>n</i> -BuLi/LiCH ₂ CN-Mediated One-Carbon Homologation of Aryl Epoxides into Conjugated Allyl Alcohols. Organic Letters, 2013, 15, 5099-5101.	4.6	8
27	Esterification or Thioesterification of Carboxylic Acids with Alcohols or Thiols Using Amphipathic Monolith-SO3H Resin. Bulletin of the Chemical Society of Japan, 2021, 94, 2702-2710.	3.2	7
28	Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. ChemSusChem, 2022, 15, .	6.8	7
29	Microwave-Mediated Continuous Hydrogen Abstraction Reaction from 2-PrOH Catalyzed by Platinum on Carbon Bead. Catalysts, 2019, 9, 655.	3 . 5	6
30	Pd catalysts supported on dual-pore monolithic silica beads for chemoselective hydrogenation under batch and flow reaction conditions. Catalysis Science and Technology, 2020, 10, 6359-6367.	4.1	6
31	Development of Facile and Simple Processes for the Heterogeneous Pd-Catalyzed Ligand-Free Continuous-Flow Suzuki–Miyaura Coupling. Catalysts, 2020, 10, 1209.	3.5	5
32	Revisiting the synthesis of aryl nitriles: a pivotal role of CAN. Organic and Biomolecular Chemistry, 2021, 19, 1344-1351.	2.8	4
33	Robust Continuous-Flow Synthesis of Deuterium-Labeled $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Nitroalcohols Catalyzed by Basic Anion Exchange Resin. Bulletin of the Chemical Society of Japan, 2020, 93, 1000-1006.	3.2	3
34	Ruthenium-on-Carbon-Catalyzed Facile Solvent-Free Oxidation of Alcohols: Efficient Progress under Solid–Solid (Liquid)–Gas Conditions. Chemical and Pharmaceutical Bulletin, 2021, 69, 1200-1205.	1.3	3
35	Platinum on carbon-catalysed site-selective H–D exchange reaction of allylic alcohols using alkyl amines as a hydrogen source. Organic Chemistry Frontiers, 2022, 9, 1986-1991.	4.5	3
36	Metal Catalyzed Hâ \in "D Exchange Methods Using D2O as a Deuterium Source: A Comparative Study in Different Sealed Devices. , 2021, , .		1

#	Article	IF	CITATIONS
37	Highly Selective Synthesis of cisâ€2,2,4,4â€Tetramethylcyclobutaneâ€1,3â€diol via Solventâ€Free Hydrogenation and Isomerization. Asian Journal of Organic Chemistry, 0, , .	2.7	1
38	Development of Solid Catalysts for Selective Reactions and their Application to Continuous-Flow Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 472-482.	0.1	0
39	Catalytic Intramolecular Cyclization of Alkynyl Cyclic Acetals via Chemoselective Activation Leading to a Phenanthrene Core. Bulletin of the Chemical Society of Japan, 2022, 95, 735-742.	3.2	O