
Yuanzheng Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5290646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viscosity of glass-forming liquids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19780-19784.	3.3	757
2	Topological Principles of Borosilicate Glass Chemistry. Journal of Physical Chemistry B, 2011, 115, 12930-12946.	1.2	289
3	Understanding Glass through Differential Scanning Calorimetry. Chemical Reviews, 2019, 119, 7848-7939.	23.0	258
4	Melt-Quenched Glasses of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 3484-3492.	6.6	252
5	Hybrid glasses from strong and fragile metal-organic framework liquids. Nature Communications, 2015, 6, 8079.	5.8	242
6	Transparent glass-ceramics functionalized by dispersed crystals. Progress in Materials Science, 2018, 97, 38-96.	16.0	236
7	Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Progress in Materials Science, 2016, 76, 154-228.	16.0	232
8	Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses. Nature, 2004, 427, 717-720.	13.7	226
9	Prediction of Glass Hardness Using Temperature-Dependent Constraint Theory. Physical Review Letters, 2010, 105, 115503.	2.9	225
10	A metal-organic framework with ultrahigh glass-forming ability. Science Advances, 2018, 4, eaao6827.	4.7	196
11	Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 2022, 375, 307-310.	6.0	190
12	Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. Journal of Materials Chemistry, 2012, 22, 5960.	6.7	176
13	Quantitative Design of Glassy Materials Using Temperature-Dependent Constraint Theory. Chemistry of Materials, 2010, 22, 5358-5365.	3.2	156
14	Metal-organic framework glasses with permanent accessible porosity. Nature Communications, 2018, 9, 5042.	5.8	147
15	Fictive temperature, cooling rate, and viscosity of glasses. Journal of Chemical Physics, 2004, 120, 8053-8059.	1.2	138
16	Fragile-to-strong transition in metallic glass-forming liquids. Journal of Chemical Physics, 2010, 133, 014508.	1.2	136
17	Secondary Relaxation in Metallic Glass Formers: Its Correlation with the Genuine Johariâ^ Goldstein Relaxation. Journal of Physical Chemistry C, 2009, 113, 15001-15006.	1.5	133
18	Ultrahigh-field ⁶⁷ Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science, 2020, 367, 1473-1476.	6.0	132

#	Article	IF	CITATIONS
19	Fabrication of highly insulating foam glass made from CRT panel glass. Ceramics International, 2015, 41, 9793-9800.	2.3	125
20	Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses. Journal of Physics Condensed Matter, 2003, 15, S1051-S1068.	0.7	123
21	Optimized assembling of MOF/SnO2/Graphene leads to superior anode for lithium ion batteries. Nano Energy, 2020, 74, 104868.	8.2	116
22	Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 5106.	6.7	114
23	Composition–structure–property relationships in boroaluminosilicate glasses. Journal of Non-Crystalline Solids, 2012, 358, 993-1002.	1.5	98
24	The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy, 2019, 65, 104032.	8.2	90
25	Mesoporous zirconium phosphate from yeast biotemplate. Journal of Colloid and Interface Science, 2010, 343, 344-349.	5.0	88
26	Influence of the glass–calcium carbonate mixture's characteristics on the foaming process and the properties of the foam glass. Journal of the European Ceramic Society, 2014, 34, 1591-1598.	2.8	87
27	Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIFâ€4. Angewandte Chemie - International Edition, 2015, 54, 6447-6451.	7.2	87
28	Universality of the high-temperature viscosity limit of silicate liquids. Physical Review B, 2011, 83, .	1.1	86
29	Mixed alkaline earth effect in sodium aluminosilicate glasses. Journal of Non-Crystalline Solids, 2013, 369, 61-68.	1.5	85
30	Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification. Nanoscale, 2015, 7, 2633-2640.	2.8	85
31	Metalâ€Organic Framework Glass Anode with an Exceptional Cyclingâ€Induced Capacity Enhancement for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2110048.	11.1	83
32	Enhancing Li-ion battery anode performances via disorder/order engineering. Nano Energy, 2018, 49, 596-602.	8.2	79
33	<scp><scp>Euâ€</scp></scp> , <scp><tbâ€< scp="">,<scp>,and <scp><scp>Dy</scp></scp>â€Doped Oxyfluoride Silicate Glasses for <scp>LED</scp> Applications. Journal of the American Ceramic Society, 2014, 97, 854-861.</scp></tbâ€<></scp>	1.9	78
34	The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Horticulture Research, 2018, 5, 72.	2.9	77
35	The mechanism of foaming and thermal conductivity of glasses foamed with MnO 2. Journal of Non-Crystalline Solids, 2015, 425, 74-82.	1.5	76
36	Fracture toughness of a metal–organic framework glass. Nature Communications, 2020, 11, 2593.	5.8	76

#	Article	IF	CITATIONS
37	Structural response of a highly viscous aluminoborosilicate melt to isotropic and anisotropic compressions. Journal of Chemical Physics, 2009, 131, .	1.2	74
38	The iso-structural viscosity, configurational entropy and fragility of oxide liquids. Journal of Non-Crystalline Solids, 2009, 355, 737-744.	1.5	74
39	The viscosity window of the silicate glass foam production. Journal of Non-Crystalline Solids, 2017, 456, 49-54.	1.5	73
40	Evidence of Intermediate-Range Order Heterogeneity in Calcium Aluminosilicate Glasses. Chemistry of Materials, 2010, 22, 4471-4483.	3.2	69
41	Liquid phase blending of metal-organic frameworks. Nature Communications, 2018, 9, 2135.	5.8	69
42	Fabricating high-energy quantum dots in ultra-thin LiFePO ₄ nanosheets using a multifunctional high-energy biomolecule—ATP. Energy and Environmental Science, 2014, 7, 2285-2294.	15.6	68
43	Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode. Nano Energy, 2019, 57, 608-615.	8.2	67
44	Irreversibility of Pressure Induced Boron Speciation Change in Glass. Scientific Reports, 2014, 4, 3770.	1.6	65
45	Secondary Relaxation Behavior in a Strong Glass. Journal of Physical Chemistry B, 2008, 112, 9053-9057.	1.2	64
46	The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation. Nanoscale, 2014, 6, 15048-15058.	2.8	62
47	Meltâ€Quenched Hybrid Glasses from Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1601705.	11.1	62
48	Optical properties of a melt-quenched metal–organic framework glass. Optics Letters, 2019, 44, 1623.	1.7	58
49	Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications. Journal of Alloys and Compounds, 2013, 555, 232-236.	2.8	57
50	Physical performances of blended cements containing calcium aluminosilicate glass powder and limestone. Cement and Concrete Research, 2011, 41, 359-364.	4.6	55
51	One-step deposition of ultrafiltration SiC membranes on macroporous SiC supports. Journal of Membrane Science, 2014, 472, 232-240.	4.1	55
52	Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nature Communications, 2015, 6, 8631.	5.8	55
53	Elastic and micromechanical properties of isostatically compressed soda–lime–borate glasses. Journal of Non-Crystalline Solids, 2013, 364, 44-52.	1.5	54
54	A model for phosphate glass topology considering the modifying ion sub-network. Journal of Chemical Physics, 2014, 140, .	1.2	54

#	Article	IF	CITATIONS
55	Impact of Drawing Stress on the Tensile Strength of Oxide Glass Fibers. Journal of the American Ceramic Society, 2010, 93, 3236-3243.	1.9	53
56	High-performance TiO2 from Baker's yeast. Journal of Colloid and Interface Science, 2011, 354, 109-115.	5.0	53
57	Enthalpy and Anisotropy Relaxation of Glass Fibers. Journal of the American Ceramic Society, 2008, 91, 745-752.	1.9	51
58	Effect of thermal history and chemical composition on hardness of silicate glasses. Journal of Non-Crystalline Solids, 2010, 356, 893-897.	1.5	51
59	Thermodynamic anomaly of the sub- <i>T</i> g relaxation in hyperquenched metallic glasses. Journal of Chemical Physics, 2013, 138, 174508.	1.2	51
60	Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids. Journal of Chemical Physics, 2015, 142, 064508.	1.2	51
61	Influence of the glass particle size on the foaming process and physical characteristics of foam glasses. Journal of Non-Crystalline Solids, 2016, 447, 190-197.	1.5	51
62	Ordered hierarchical mesoporous anatase TiO2 from yeast biotemplates. Colloids and Surfaces B: Biointerfaces, 2009, 74, 274-278.	2.5	49
63	Unified approach for determining the enthalpic fictive temperature of glasses with arbitrary thermal history. Journal of Non-Crystalline Solids, 2011, 357, 3230-3236.	1.5	49
64	Sodium diffusion in boroaluminosilicate glasses. Journal of Non-Crystalline Solids, 2011, 357, 3744-3750.	1.5	49
65	A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids. Journal of Physical Chemistry Letters, 2014, 5, 1170-1174.	2.1	49
66	Efficient Enhancement of Bismuth <scp>NIR</scp> Luminescence by Aluminum and Its Mechanism in Bismuthâ€Doped Germanate Laser Glass. Journal of the American Ceramic Society, 2016, 99, 2071-2076.	1.9	48
67	Clarifying the charging induced nucleation in glass anode of Li-ion batteries and its enhanced performances. Nano Energy, 2019, 57, 592-599.	8.2	48
68	Synthesis and properties of open- and closed-porous foamed glass with a low density. Construction and Building Materials, 2020, 247, 118574.	3.2	48
69	Structure-topology-property correlations of sodium phosphosilicate glasses. Journal of Chemical Physics, 2015, 143, 064510.	1.2	47
70	Suppressing the effect of cullet composition on the formation and properties of foamed glass. Ceramics International, 2018, 44, 11143-11150.	2.3	47
71	Observation of indentation-induced shear bands in a metalâ~'organic framework glass. Proceedings of the United States of America, 2020, 117, 10149-10154.	3.3	47
72	Hardness and incipient plasticity in silicate glasses: Origin of the mixed modifier effect. Applied Physics Letters, 2014, 104, .	1.5	46

#	Article	IF	CITATIONS
73	Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass. Journal of the American Ceramic Society, 2007, 90, 1556-1561.	1.9	45
74	Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes. Ceramics International, 2014, 40, 3277-3285.	2.3	45
75	Reconciling calorimetric and kinetic fragilities of glass-forming liquids. Journal of Non-Crystalline Solids, 2017, 456, 95-100.	1.5	45
76	Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. Tree Physiology, 2020, 40, 557-572.	1.4	45
77	Density of topological constraints as a metric for predicting glass hardness. Applied Physics Letters, 2017, 111, .	1.5	43
78	Biologically Formed Mesoporous Amorphous Silica. Journal of the American Chemical Society, 2009, 131, 2717-2721.	6.6	42
79	Integrating Transcriptomic and GC-MS Metabolomic Analysis to Characterize Color and Aroma Formation during Tepal Development in Lycoris longituba. Plants, 2019, 8, 53.	1.6	42
80	Nanoindentation of glass wool fibers. Journal of Non-Crystalline Solids, 2008, 354, 3887-3895.	1.5	41
81	Ionic diffusion and the topological origin of fragility in silicate glasses. Journal of Chemical Physics, 2009, 131, 244514.	1.2	41
82	Near-infrared emission from Eu–Yb doped silicate glasses subjected to thermal reduction. Applied Physics Letters, 2011, 98, .	1.5	41
83	Indication of liquid-liquid phase transition in CuZr-based melts. Applied Physics Letters, 2013, 103, .	1.5	41
84	Structural and topological aspects of borophosphate glasses and their relation to physical properties. Journal of Chemical Physics, 2015, 142, 184503.	1.2	41
85	Gas-releasing reactions in foam-glass formation using carbon and MnxOy as the foaming agents. Ceramics International, 2017, 43, 4638-4646.	2.3	41
86	Broad Mid-Infrared Luminescence in a Metal–Organic Framework Glass. ACS Omega, 2019, 4, 12081-12087.	1.6	41
87	Metal–Organic Framework Glasses Possess Higher Thermal Conductivity than Their Crystalline Counterparts. ACS Applied Materials & Interfaces, 2020, 12, 18893-18903.	4.0	41
88	Formation of a Nanocrystalline Layer on the Surface of Stone Wool Fibers. Journal of the American Ceramic Society, 2009, 92, 62-67.	1.9	40
89	Impact of network topology on cationic diffusion and hardness of borate glass surfaces. Journal of Chemical Physics, 2010, 133, 154509.	1.2	40
90	Bio-synthesis participated mechanism of mesoporous LiFePO4/C nanocomposite microspheres for lithium ion battery. Journal of Materials Chemistry, 2012, 22, 19948.	6.7	40

#	Article	IF	CITATIONS
91	Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochimica Acta, 2017, 232, 550-560.	2.6	40
92	Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes. Journal of Power Sources, 2017, 366, 9-17.	4.0	40
93	Effect of Na2CO3 as foaming agent on dynamics and structure of foam glass melts. Journal of Non-Crystalline Solids, 2014, 400, 1-5.	1.5	39
94	On the origin of the mixed alkali effect on indentation in silicate glasses. Journal of Non-Crystalline Solids, 2014, 406, 22-26.	1.5	39
95	Breaking the Limit of Microâ€Ductility in Oxide Glasses. Advanced Science, 2019, 6, 1901281.	5.6	38
96	Enthalpy relaxation of hyperquenched glasses and its possible link to α- and β-relaxations. Journal of Non-Crystalline Solids, 2008, 354, 350-354.	1.5	37
97	Microscopic Origins of Compositional Trends in Aluminosilicate Glass Properties. Journal of the American Ceramic Society, 2013, 96, 1436-1443.	1.9	37
98	Non-Newtonian flow behaviour of glass melts as a consequence of viscoelasticity and anisotropic flow. Journal of Non-Crystalline Solids, 1994, 175, 118-128.	1.5	36
99	Metalâ€Organicâ€Frameworkâ€Based Cathodes for Enhancing the Electrochemical Performances of Batteries: A Review. ChemElectroChem, 2019, 6, 5358-5374.	1.7	36
100	Fragility and configurational heat capacity of calcium aluminosilicate glass-forming liquids. Journal of Non-Crystalline Solids, 2017, 461, 24-34.	1.5	35
101	Biocarbon-coated LiFePO4 nucleus nanoparticles enhancing electrochemical performances. Chemical Communications, 2012, 48, 10093.	2.2	34
102	Electronic conductivity of vanadium-tellurite glass-ceramics. Journal of Non-Crystalline Solids, 2013, 378, 196-200.	1.5	34
103	Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass. Journal of Non-Crystalline Solids, 2017, 465, 59-64.	1.5	34
104	Evaluation of the contributions to the effective thermal conductivity of an open-porous-type foamed glass. Construction and Building Materials, 2019, 214, 337-343.	3.2	34
105	Compositional dependence of fragility and glass forming ability of calcium aluminosilicate melts. Journal of Non-Crystalline Solids, 2009, 355, 867-873.	1.5	33
106	Topo hemical Tailoring of Tellurium Quantum Dot Precipitation from Supercooled Polyphosphates for Broadband Optical Amplification. Advanced Optical Materials, 2016, 4, 1624-1634.	3.6	33
107	Revealing hidden endotherm of Hummers' graphene oxide during low-temperature thermal reduction. Carbon, 2018, 138, 337-347.	5.4	33
108	Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes. Advanced Functional Materials, 2014, 24, 2206-2215.	7.8	32

#	Article	IF	CITATIONS
109	Tellurium nanoparticles enhanced electrochemical performances of TeO2-V2O5-Al2O3 glass anode for Lithium-ion batteries. Journal of Non-Crystalline Solids, 2019, 521, 119491.	1.5	32
110	Enhancing Na-ion storage in Na ₃ V ₂ (PO ₄) ₃ /C cathodes for sodium ion batteries through Br and N co-doping. Inorganic Chemistry Frontiers, 2020, 7, 1289-1297.	3.0	32
111	A new description and interpretation of the flow behaviour of glass forming melts. Journal of Non-Crystalline Solids, 1994, 180, 66-79.	1.5	31
112	Experimental evidence for the existence of an ordered structure in a silicate liquid above its liquidus temperature. Journal of Non-Crystalline Solids, 2004, 345-346, 523-527.	1.5	31
113	Bio-assisted synthesis of mesoporous Li3V2(PO4)3 for high performance lithium-ion batteries. Electrochimica Acta, 2013, 112, 295-303.	2.6	31
114	Mechanically induced excess enthalpy in inorganic glasses. Applied Physics Letters, 2005, 86, 121917.	1.5	30
115	Crystallisation behaviour and high-temperature stability of stone wool fibres. Journal of the European Ceramic Society, 2010, 30, 1287-1295.	2.8	30
116	Influence of aluminum speciation on the stability of aluminosilicate glasses against crystallization. Applied Physics Letters, 2012, 101, 041906.	1.5	30
117	Impact of pore structure on the thermal conductivity of glass foams. Materials Letters, 2019, 250, 72-74.	1.3	30
118	Abnormal sub-Tg enthalpy relaxation in the CuZrAl metallic glasses far from equilibrium. Applied Physics Letters, 2011, 98, .	1.5	29
119	An extended topological model for binary phosphate glasses. Journal of Chemical Physics, 2014, 141, 244502.	1.2	29
120	Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans. Genes, 2016, 7, 78.	1.0	29
121	Decoupling between birefringence decay, enthalpy relaxation and viscous flow in calcium boroalumosilicate glasses. Chemical Geology, 2008, 256, 299-305.	1.4	28
122	Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass. Chemistry of Materials, 2009, 21, 1242-1247.	3.2	28
123	Material functionalities from molecular rigidity: Maxwell's modern legacy. MRS Bulletin, 2017, 42, 18-22.	1.7	28
124	Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries. Journal of Power Sources, 2017, 342, 717-725.	4.0	28
125	Toward hard and highly crack resistantÂmagnesium aluminosilicate glasses and transparent glassâ€eeramics. Journal of the American Ceramic Society, 2020, 103, 3600-3609.	1.9	28
126	Glass transition in an isostatically compressed calcium metaphosphate glass. Journal of Chemical Physics, 2007, 126, 144902.	1.2	27

#	Article	IF	CITATIONS
127	Effect of alkali phosphate content on foaming of CRT panel glass using Mn3O4 and carbon as foaming agents. Journal of Non-Crystalline Solids, 2018, 482, 217-222.	1.5	27
128	Structural evolution during the sub-Tg relaxation of hyperquenched metallic glasses. Applied Physics Letters, 2010, 96, .	1.5	26
129	Hardness of Oxynitride Glasses: Topological Origin. Journal of Physical Chemistry B, 2015, 119, 4109-4115.	1.2	26
130	Impact of nitridation of metaphosphate glasses on liquid fragility. Journal of Non-Crystalline Solids, 2016, 441, 22-28.	1.5	26
131	Mutual-stabilization in chemically bonded graphene oxide–TiO ₂ heterostructures synthesized by a sol–gel approach. RSC Advances, 2017, 7, 41217-41227.	1.7	26
132	Synthesis of NaCl single crystals with defined morphologies as templates for fabricating hollow nano/micro-structures. RSC Advances, 2015, 5, 5072-5076.	1.7	25
133	Role of Amorphous Phases in Enhancing Performances of Electrode Materials for Alkali Ion Batteries. Frontiers in Materials, 2020, 6, .	1.2	25
134	NMR evidence for the charge-discharge induced structural evolution in a Li-ion battery glass anode and its impact on the electrochemical performances. Nano Energy, 2021, 80, 105589.	8.2	25
135	The effects of Mg–Ca and Fe–Mg substitution on rheological and thermodynamic properties of aluminosilicate melts. Journal of Non-Crystalline Solids, 2004, 345-346, 782-786.	1.5	24
136	Li 3 V 2 (PO 4) 3 /LiFePO 4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochimica Acta, 2016, 219, 682-692.	2.6	24
137	Thermodynamic features and enthalpy relaxation in a metal–organic framework glass. Physical Chemistry Chemical Physics, 2018, 20, 18291-18296.	1.3	24
138	Towards large-size bulk ZIF-62 glasses via optimizing the melting conditions. Journal of Non-Crystalline Solids, 2020, 530, 119806.	1.5	24
139	Glass transition in hyperquenched water? (reply). Nature, 2005, 435, E1-E2.	13.7	23
140	Glass-forming ability of soda lime borate liquids. Journal of Non-Crystalline Solids, 2012, 358, 658-665.	1.5	23
141	Hydration of Blended <scp>P</scp> ortland Cements Containing Calciumâ€Aluminosilicate Glass Powder and Limestone. Journal of the American Ceramic Society, 2012, 95, 403-409.	1.9	23
142	Calorimetric Signature of Structural Heterogeneity in a Ternary Silicate Glass. Journal of the American Ceramic Society, 2013, 96, 3035-3037.	1.9	23
143	Origin of the frequency shift of Raman scattering in chalcogenide glasses. Journal of Non-Crystalline Solids, 2014, 391, 117-119.	1.5	23
144	Dissolution of Stone Wool Fibers with Phenol-urea-formaldehyde Binder in a Synthetic Lung Fluid. Chemical Research in Toxicology, 2019, 32, 2398-2410.	1.7	23

#	Article	IF	CITATIONS
145	Biologically formed hollow cuprous oxide microspheres. Materials Science and Engineering C, 2010, 30, 758-762.	3.8	22
146	Tunable photoluminescence induced by thermal reduction in rare earth doped glasses. Journal of Materials Chemistry, 2011, 21, 6614.	6.7	22
147	Correlation between supercooled liquid relaxation and glass Poisson's ratio. Journal of Chemical Physics, 2015, 143, 164504.	1.2	22
148	Influence of physical ageing on the excessive heat capacity of hyperquenched silicate glass fibers. Journal of Non-Crystalline Solids, 2004, 348, 72-77.	1.5	21
149	Modifying glass surfaces via internal diffusion. Journal of Non-Crystalline Solids, 2010, 356, 290-298.	1.5	21
150	Toward the effective design of steam-stable silica-based membranes. Microporous and Mesoporous Materials, 2013, 179, 242-249.	2.2	21
151	Volume and structural relaxation in compressed sodium borate glass. Physical Chemistry Chemical Physics, 2016, 18, 29879-29891.	1.3	21
152	Evaluation of Foaming Behavior of Glass Melts by Highâ€Temperature Microscopy. International Journal of Applied Glass Science, 2016, 7, 524-531.	1.0	21
153	Mixed alkalineâ€earth effects on several mechanical and thermophysical properties of aluminate glasses and melts. Journal of the American Ceramic Society, 2019, 102, 1128-1136.	1.9	21
154	Structural evolution in a melt-quenched zeolitic imidazolate framework glass during heat-treatment. Chemical Communications, 2019, 55, 2521-2524.	2.2	21
155	Topological understanding of the mixed alkaline earth effect in glass. Journal of Non-Crystalline Solids, 2020, 527, 119696.	1.5	21
156	Sub-Tg enthalpy relaxation in an extremely unstable oxide glass and its implication for structural heterogeneity. Journal of Non-Crystalline Solids, 2013, 381, 23-28.	1.5	20
157	Critical V ₂ O ₅ /TeO ₂ Ratio Inducing Abrupt Property Changes in Vanadium Tellurite Glasses. Journal of Physical Chemistry B, 2014, 118, 141212105104005.	1.2	20
158	Sub- <i>T</i> g relaxation patterns in Cu-based metallic glasses far from equilibrium. Journal of Chemical Physics, 2014, 141, 164507.	1.2	20
159	Anomalous Enthalpy Relaxation in Vitreous Silica. Frontiers in Materials, 2015, 2, .	1.2	20
160	Composition dependence of the optical and structural properties of Eu-doped oxyfluoride glasses. Journal of Alloys and Compounds, 2015, 632, 291-295.	2.8	20
161	Foam glass obtained through highâ€pressure sintering. Journal of the American Ceramic Society, 2018, 101, 3917-3923.	1.9	20
162	High-speed synchrotron X-ray imaging of glass foaming and thermal conductivity simulation. Acta Materialia, 2020, 189, 85-92.	3.8	20

#	Article	IF	CITATIONS
163	A new threshold of uncovering the nature of glass transition: The slow ß relaxation in glassy states. Science Bulletin, 2010, 55, 457-472.	1.7	19
164	Phase separation in an ionomer glass: Insight from calorimetry and phase transitions. Journal of Non-Crystalline Solids, 2015, 415, 24-29.	1.5	19
165	A medium range order structural connection to the configurational heat capacity of borate–silicate mixed glasses. Physical Chemistry Chemical Physics, 2016, 18, 10887-10895.	1.3	19
166	Biomineralizing synthesis of mesoporous hydroxyapatite–calcium pyrophosphate polycrystal using ovalbumin as biosurfactant. Materials Chemistry and Physics, 2008, 111, 265-270.	2.0	18
167	Enthalpy relaxation in hyperquenched glasses of different fragility. Journal of Non-Crystalline Solids, 2008, 354, 1862-1870.	1.5	18
168	Heterogeneous enthalpy relaxation in glasses far from equilibrium. Chemical Physics Letters, 2010, 494, 37-40.	1.2	18
169	Cation Diffusivity and the Mixed Network Former Effect in Borosilicate Glasses. Journal of Physical Chemistry B, 2015, 119, 7106-7115.	1.2	18
170	Multi-nanolayered VO2/Sapphire Thin Film via Spinodal Decomposition. Scientific Reports, 2018, 8, 5342.	1.6	18
171	On the frequency correction in temperature-modulated differential scanning calorimetry of the glass transition. Journal of Non-Crystalline Solids, 2012, 358, 1710-1715.	1.5	17
172	Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses. Journal of Non-Crystalline Solids, 2012, 358, 3193-3199.	1.5	17
173	Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy. Scientific Reports, 2015, 5, 17526.	1.6	17
174	Poor glass-forming ability of Fe-based alloys: Its origin in high-temperature melt dynamics. Journal of Non-Crystalline Solids, 2017, 471, 120-127.	1.5	17
175	Fractography and tensile strength of glass wool fibres. Journal of the Ceramic Society of Japan, 2008, 116, 841-845.	0.5	16
176	Improvement of capacity and cycling performance of spinel LiMn2O4 cathode materials with TiO2-B nanobelts. Electrochimica Acta, 2013, 111, 691-697.	2.6	16
177	Modifier constraints in alkali ultraphosphate glasses. Journal of Non-Crystalline Solids, 2014, 405, 12-15.	1.5	16
178	Li ₂ NaV ₂ (PO ₄) ₃ /Hard Carbon Nanocomposite Cathodes for Highâ€Performance Li―and Naâ€ŀon Batteries. ChemElectroChem, 2017, 4, 671-678.	1.7	16
179	Phenol Abatement by Titanium Dioxide Photocatalysts: Effect of The Graphene Oxide Loading. Nanomaterials, 2019, 9, 947.	1.9	16
180	Tailoring Cluster Configurations Enables Tunable Broad-Band Luminescence in Glass. Chemistry of Materials, 2020, 32, 8653-8661.	3.2	16

#	Article	IF	CITATIONS
181	Vibrational dynamics and thermodynamics, ideal glass transitions and folding transitions, in liquids and biopolymers. AIP Conference Proceedings, 2004, , .	0.3	15
182	Probing iron redox state in multicomponent glasses by XPS. Chemical Geology, 2012, 322-323, 145-150.	1.4	15
183	Influence of neodymium-doping on structure and properties of yttrium aluminium garnet. CrystEngComm, 2013, 15, 8029.	1.3	15
184	TiO ₂ -B nanoribbons anchored with NiO nanosheets as hybrid anode materials for rechargeable lithium ion batteries. CrystEngComm, 2015, 17, 1710-1715.	1.3	15
185	Mixed alkali silicophosphate oxynitride glasses: Structure-property relations. Journal of Non-Crystalline Solids, 2017, 462, 51-64.	1.5	15
186	Enhancing ionic conductivity in Ag3PS4 via mechanical amorphization. Journal of Non-Crystalline Solids, 2019, 521, 119476.	1.5	15
187	From Molten Calcium Aluminates through Phase Transitions to Cement Phases. Advanced Science, 2020, 7, 1902209.	5.6	15
188	Biochemical and Comparative Transcriptome Analyses Reveal Key Genes Involved in Major Metabolic Regulation Related to Colored Leaf Formation in Osmanthus fragrans â€~Yinbi Shuanghui' during Development. Biomolecules, 2020, 10, 549.	1.8	15
189	The Transformation from Translucent into Transparent Rare Earth Ions Doped Oxyfluoride Glass eramics with Enhanced Luminescence. Advanced Optical Materials, 2022, 10, .	3.6	15
190	Inorganic Crystalline and Amorphous Fibers - Science and Technology. Journal of the American Ceramic Society, 2006, 89, 1-1.	1.9	14
191	Structural relaxation in annealed hyperquenched basaltic glasses: Insights from calorimetry. Journal of Non-Crystalline Solids, 2012, 358, 1356-1361.	1.5	14
192	Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids. Journal of Physical Chemistry B, 2014, 118, 10258-10265.	1.2	14
193	Fiber spinnability of glass melts. International Journal of Applied Glass Science, 2017, 8, 37-47.	1.0	14
194	3D porous Li ₃ V ₂ (PO ₄) ₃ /hard carbon composites for improving the rate performance of lithium ion batteries. RSC Advances, 2017, 7, 21848-21855.	1.7	14
195	The Charge-Balancing Role of Calcium and Alkali Ions in Per-Alkaline Aluminosilicate Glasses. Journal of Physical Chemistry B, 2018, 122, 3184-3195.	1.2	14
196	Li ₂ TiSiO ₅ Glass Ceramic as Anode Materials for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 9760-9768.	2.5	14
197	Tuning Porosity of Reduced Graphene Oxide Membrane Materials by Alkali Activation. Nanomaterials, 2020, 10, 2093.	1.9	14
198	Redox reactions and inward cationic diffusion in glasses caused by CO and H2 gases. Solid State Ionics, 2009, 180, 1121-1124.	1.3	13

#	Article	IF	CITATIONS
199	Aging in chalcohalide glasses: Origin and consequences. Journal of Non-Crystalline Solids, 2012, 358, 129-132.	1.5	13
200	Role of elastic deformation in determining the mixed alkaline earth effect of hardness in silicate glasses. Journal of Applied Physics, 2015, 117, .	1.1	13
201	Impact of fiberizing method on physical properties of glass wool fibers. Journal of Non-Crystalline Solids, 2017, 476, 122-127.	1.5	13
202	Polymorph formation for a zeolitic imidazolate framework composition - Zn(Im) 2. Microporous and Mesoporous Materials, 2018, 265, 57-62.	2.2	13
203	Exploration of Floral Volatile Organic Compounds in Six Typical Lycoris taxa by GC-MS. Plants, 2019, 8, 422.	1.6	13
204	Impact of 1-Methylimidazole on Crystal Formation, Phase Transitions, and Glass Formation in a Zeolitic Imidazolate Framework. Crystal Growth and Design, 2020, 20, 6528-6534.	1.4	13
205	Optical bandgap and luminescence in Er3+ doped oxyfluoro-germanate glass-ceramics. Journal of Non-Crystalline Solids, 2021, 555, 120533.	1.5	13
206	Er ³⁺ â€Yb ³⁺ ions doped fluoroâ€aluminosilicate glassâ€ceramics as a temperatureâ€sensing material. Journal of the American Ceramic Society, 2021, 104, 4471-4478.	1.9	13
207	Broadband NIR-emitting Te cluster-doped glass for smart light source towards night-vision and NIR spectroscopy applications. Photonics Research, 2022, 10, 1187.	3.4	13
208	Revealing the connection between the slow <i>β</i> relaxation and sub- <i>T</i> g enthalpy relaxation in metallic glasses. Journal of Applied Physics, 2016, 120, .	1.1	12
209	Impact of surface impurity on phase transitions in amorphous micro silica. Journal of Non-Crystalline Solids, 2016, 450, 42-47.	1.5	12
210	Nano-phase separation and structural ordering in silica-rich mixed network former glasses. Physical Chemistry Chemical Physics, 2018, 20, 15707-15717.	1.3	12
211	The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glass. Ceramics International, 2021, 47, 2839-2847.	2.3	12
212	Hypersensitivity of the Glass Transition to Pressure History in a Metal–Organic Framework Glass. Chemistry of Materials, 2022, 34, 5030-5038.	3.2	12
213	Energy Release in Isothermally Stretched Silicate Glass fibers. Journal of the American Ceramic Society, 2006, 89, 70-74.	1.9	11
214	Surface modification of polyvalent element-containing glasses. Applied Surface Science, 2009, 256, 202-207.	3.1	11
215	Correlation between Alkaline Earth Diffusion and Fragility of Silicate Glasses. Journal of Physical Chemistry B, 2009, 113, 11194-11200.	1.2	11
216	Reductionâ€Induced Inward Diffusion and Crystal Growth on the Surfaces of Ironâ€Bearing Silicate Glasses. Journal of the American Ceramic Society, 2015, 98, 1799-1806.	1.9	11

#	Article	IF	CITATIONS
217	Subâ€ <i>T</i> _g enthalpy relaxation in a millingâ€derived chalcogenide glass. Journal of the American Ceramic Society, 2017, 100, 968-974.	1.9	11
218	Synthesis, phase transitions and vitrification of the zeolitic imidazolate framework: ZIF-4. Journal of Non-Crystalline Solids, 2019, 525, 119665.	1.5	11
219	Bond switching is responsible for nanoductility in zeolitic imidazolate framework glasses. Dalton Transactions, 2021, 50, 6126-6132.	1.6	11
220	The deformation of short-range order leading to rearrangement of topological network structure in zeolitic imidazolate framework glasses. IScience, 2022, 25, 104351.	1.9	11
221	Thermodynamic Basis for Cluster Kinetics:Â Prediction of the Fragility of Marginal Metallic Glass-Forming Liquids. Journal of Physical Chemistry B, 2006, 110, 21950-21957.	1.2	10
222	A new approach for determining the critical cooling rates of nucleation in glassâ€forming liquids. Journal of the American Ceramic Society, 2017, 100, 3875-3882.	1.9	10
223	Phase transitions and glass transition in a hyperquenched silicaâ€alumina glass. Journal of the American Ceramic Society, 2017, 100, 3434-3439.	1.9	10
224	Green and low-cost synthesis of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries. Materials Letters, 2019, 246, 153-156.	1.3	10
225	Determining the liquidus viscosity of glassâ€forming liquids through differential scanning calorimetry. Journal of the American Ceramic Society, 2020, 103, 6070-6074.	1.9	10
226	Mixed-alkali effect on hardness and indentation-loading behavior of a borate glass system. Journal of Non-Crystalline Solids, 2020, 548, 120314.	1.5	10
227	Genome-Wide Identification of the Auxin Response Factor (ARF) Gene Family and Their Expression Analysis during Flower Development of Osmanthus fragrans. Forests, 2020, 11, 245.	0.9	10
228	Multiâ€Functional Black Bioactive Glasses Prepared via Containerless Melting Process for Tumor Therapy and Tissue Regeneration. Advanced Functional Materials, 2021, 31, 2101505.	7.8	10
229	Preparation and thermal properties of commercial vermiculite bonded with potassium silicate. Thermochimica Acta, 2021, 699, 178926.	1.2	10
230	Simple and Rapid Synthesis of Fe(PO ₃) ₃ by Microwave Sintering. Journal of Chemical & Engineering Data, 2009, 54, 2073-2076.	1.0	9
231	Sol–Gel Synthesis of a Biotemplated Inorganic Photocatalyst: A Simple Experiment for Introducing Undergraduate Students to Materials Chemistry. Journal of Chemical Education, 2012, 89, 1466-1469.	1.1	9
232	Impact of amorphous micro silica on the C-S-H phase formation in porous calcium silicates. Journal of Non-Crystalline Solids, 2018, 481, 556-561.	1.5	9
233	Impact of minor iron content on crystal structure and properties of porous calcium silicates during synthesis. Materials Chemistry and Physics, 2018, 205, 180-185.	2.0	9
234	Surfactant-Assisted Fabrication of Alumina-Doped Amorphous Silica Nanofiltration Membranes with Enhanced Water Purification Performances. Nanomaterials, 2019, 9, 1368.	1.9	9

#	Article	IF	CITATIONS
235	Insights into the trihelix transcription factor responses to salt and other stresses in Osmanthus fragrans. BMC Genomics, 2022, 23, 334.	1.2	9
236	Oriented calcium metaphosphate glass-ceramics. Journal of Materials Research, 1999, 14, 3983-3987.	1.2	8
237	Inward and Outward Diffusion of Modifying Ions and its Impact on the Properties of Glasses and Glass–Ceramics. International Journal of Applied Glass Science, 2011, 2, 117-128.	1.0	8
238	Thermodynamic evidence for cluster ordering in Cu46Zr42Al7Y5 ribbons during glass transition. Science Bulletin, 2016, 61, 706-713.	4.3	8
239	Physical performances of alkaliâ€activated portland cementâ€glassâ€limestone blends. Journal of the American Ceramic Society, 2017, 100, 4159-4172.	1.9	8
240	Layered hybrid phase Li ₂ NaV ₂ (PO ₄) ₃ /carbon dot nanocomposite cathodes for Li ⁺ /Na ⁺ mixed-ion batteries. RSC Advances, 2017, 7, 2658-2666.	1.7	8
241	Clarifying the gel-to-glass transformation in Al2O3-SiO2 systems. Journal of Non-Crystalline Solids, 2018, 492, 77-83.	1.5	8
242	Mechanical and dynamic properties of V2O5-TeO2-P2O5 glasses. Journal of Alloys and Compounds, 2021, 863, 158074.	2.8	8
243	Deformation mechanism of a metal–organic framework glass under indentation. Physical Chemistry Chemical Physics, 2021, 23, 16923-16931.	1.3	8
244	Genome-Wide Analysis of NAC Transcription Factors and Characterization of the Cold Stress Response in Sweet Osmanthus. Plant Molecular Biology Reporter, 2020, 38, 314-330.	1.0	8
245	Sensitivity of the glass transition and melting in a metal–organic framework to ligand chemistry. Chemical Communications, 2022, 58, 823-826.	2.2	8
246	Pressure-induced structural transformations in phosphorus oxynitride glasses. Journal of Non-Crystalline Solids, 2016, 452, 153-160.	1.5	7
247	Structural response to sub-Tg annealing in a hyperquenched SiO2-Al2O3 glass. Journal of Alloys and Compounds, 2018, 741, 331-336.	2.8	7
248	Self-limited growth of nanocrystals in phosphosilicate melts during cooling. Journal of the European Ceramic Society, 2019, 39, 3876-3882.	2.8	7
249	Revealing the role of the amorphous phase in Na0.74CoO2/C/N composite cathode. Journal of Alloys and Compounds, 2020, 815, 152616.	2.8	7
250	Comparison of some non-Newtonian flow equations for inorganic glass melts and amorphous polymers. Journal of Non-Crystalline Solids, 1996, 202, 253-265.	1.5	6
251	FRAGILITY OF A CALCIUM METAPHOSPHATE MELT AND RELAXATION OF ITS GLASS FIBRES. Phosphorus Research Bulletin, 2002, 13, 39-50.	0.1	6
252	Inward Cationic Diffusion and Percolation Transition in Glass–Ceramics. Journal of the American Ceramic Society, 2010, 93, 2161-2163.	1.9	6

#	Article	IF	CITATIONS
253	Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction. Materials Science and Engineering C, 2013, 33, 1592-1600.	3.8	6
254	Structural stability of NaPON glass upon heating in air and nitrogen. Journal of Non-Crystalline Solids, 2018, 482, 137-146.	1.5	6
255	Structural impact of nitrogen incorporation on properties of alkali germanophosphate glasses. Journal of the American Ceramic Society, 2018, 101, 5004-5019.	1.9	6
256	Application of foaming agent–oxidizing agent couples to foamed-glass formation. Journal of Non-Crystalline Solids, 2021, 553, 120469.	1.5	6
257	BaAl2Si2O8 polymorphs and a novel reversible transition of BaAlF5 in supercooled oxyfluoride aluminosilicate liquids. Journal of the European Ceramic Society, 2021, 41, 7282-7287.	2.8	6
258	Borosilicate Glasses., 2021,, 519-539.		6
259	Mixed metal node effect in zeolitic imidazolate frameworks. RSC Advances, 2022, 12, 10815-10824.	1.7	6
260	Homogeneity of Inorganic Glasses: Quantification and Ranking. International Journal of Applied Glass Science, 2011, 2, 137-143.	1.0	5
261	Effect of stirring on striae in glass melts. Journal of Non-Crystalline Solids, 2012, 358, 349-353.	1.5	5
262	Sintering temperature and atmosphere modulated evolution of structure and luminescence of 2CaO–P2O5–B2O3: Eu phosphors. Journal of Luminescence, 2014, 145, 110-113.	1.5	5
263	Influence of rare earth oxides on the non-isothermal crystallization of phosphosilicate melts during cooling. Journal of Non-Crystalline Solids, 2014, 385, 75-80.	1.5	5
264	Sub-Tg enthalpy relaxation in milled and quenched As2S3 glasses. Journal of Non-Crystalline Solids, 2018, 500, 225-230.	1.5	5
265	Reversible formation-melting of nano-crystals in supercooled oxyfluoride germanate liquids. Journal of the European Ceramic Society, 2019, 39, 5373-5379.	2.8	5
266	Impact of gas composition on thermal conductivity of glass foams prepared via high-pressure sintering. Journal of Non-Crystalline Solids: X, 2019, 1, 100014.	0.5	5
267	Liquid fragility determination of oxide glassâ€formers using temperatureâ€modulated DSC. International Journal of Applied Glass Science, 2019, 10, 321-329.	1.0	5
268	Water enables a performance jump of glass anode for lithium-ion batteries. Journal of Non-Crystalline Solids, 2022, 576, 121225.	1.5	5
269	Topological control of negatively charged local environments for tuning bismuth NIR luminescence in glass materials. Journal of Alloys and Compounds, 2022, 898, 162884.	2.8	5
270	Integrated transcriptome and endogenous hormone analysis provides new insights into callus proliferation in Osmanthus fragrans. Scientific Reports, 2022, 12, 7609.	1.6	5

#	Article	IF	CITATIONS
271	Quantification of Chemical Striae in Inorganic Melts and Glasses through Picture Processing. Journal of the American Ceramic Society, 2010, 93, 2705-2712.	1.9	4
272	Effect of the initial stage of annealing on modeling of enthalpy relaxation in a hyperquenched glass. Journal of Non-Crystalline Solids, 2013, 378, 121-125.	1.5	4
273	Structure, crystallization, and performances of alkalineâ€earth boroaluminosilicate sealing glasses for SOFCs. Journal of the American Ceramic Society, 2021, 104, 2560-2570.	1.9	4
274	Tunable broadband near-infrared luminescence in glass realized by defect-engineering. Optics Express, 2021, 29, 32149.	1.7	4
275	Spectroscopic properties of Er3+-doped oxyfluoro-germanate glass ceramics: A Judd-Ofelt theory analysis. Journal of Non-Crystalline Solids, 2021, 574, 121167.	1.5	4
276	The hardest amorphous material. National Science Review, 2022, 9, nwab203.	4.6	4
277	Revealing the nature of glass by the hyperquenching-annealing-calorimetry approach. Journal of Non-Crystalline Solids: X, 2022, 14, 100099.	0.5	4
278	Stress generation modulus and brittleness of glass melts. Journal of Non-Crystalline Solids, 1995, 182, 278-285.	1.5	3
279	FRAGILITY AND FLOW BEHAVIOUR OF SEVERAL PHOSPHATE AND SILICATE MELTS. Phosphorus Research Bulletin, 1999, 10, 497-502.	0.1	3
280	Response to "Comment on â€~A model for phosphate glass topology considering the modifying ion sub-networkâ€â€™ [J. Chem. Phys.142, 107103 (2015)]. Journal of Chemical Physics, 2015, 142, 107104.	1.2	3
281	Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials. Journal of Solid State Electrochemistry, 2016, 20, 2063-2069.	1.2	3
282	SSR marker development in Clerodendrum trichotomum using transcriptome sequencing. PLoS ONE, 2019, 14, e0225451.	1.1	3
283	New Insights into the Roles of Osmanthus Fragrans Heat-Shock Transcription Factors in Cold and Other Stress Responses. Horticulturae, 2022, 8, 80.	1.2	3
284	Ironâ€phosphate glassâ€ceramic anodes for lithiumâ€ion batteries. International Journal of Applied Glass Science, 2022, 13, 420-428.	1.0	3
285	The effect of melt-homogenization and heat-treatment on the optical properties of the rare earth doped oxyfluoride glass-ceramics. Journal of Non-Crystalline Solids, 2022, 593, 121773.	1.5	3
286	SHEAR THINNING OF FLUOROAPATITE MELTS AND ORIENTATION OF CRYSTALS IN THE MELTS. Phosphorus Research Bulletin, 1999, 10, 652-657.	0.1	2
287	Quantification of the Boron Speciation and Cu Oxidation States in Alkali Borosilicate Glasses by Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2015, 21, 791-792.	0.2	2
288	Structural Origins of the Enhancement in Ionic Conductivity of a Chalcogenide Compound by Adding Agl. ChemElectroChem, 2020, 7, 1567-1572.	1.7	2

#	Article	IF	CITATIONS
289	Exploration of the Potential Transcriptional Regulatory Mechanisms of DNA Methyltransferases and MBD Genes in Petunia Anther Development and Multi-Stress Responses. Genes, 2022, 13, 314.	1.0	2
290	Insights Into the MYB-Related Transcription Factors Involved in Regulating Floral Aroma Synthesis in Sweet Osmanthus. Frontiers in Plant Science, 2022, 13, 765213.	1.7	2
291	Impact of silicon doping on the structure and crystallization of a vanadium-tellurite glass. Journal of Non-Crystalline Solids, 2022, 589, 121651.	1.5	2
292	Effects of hydrolytic retardants on the texture of lyotropic liquid crystal phases. Inorganic Materials, 2010, 46, 1369-1374.	0.2	1
293	Microscopic Features of Biologically Formed Amorphous Silica. , 0, , .		1
294	Structural flexibility in prototypical zeolitic imidazolate frameworks. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s85-s86.	0.0	1
295	Formation and characterization of mesostructured silica nanotubes. Journal of Sol-Gel Science and Technology, 2011, 58, 334-339.	1.1	0
296	Bioactive Glass: Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes (Adv. Funct. Mater. 15/2014). Advanced Functional Materials, 2014, 24, 2205-2205.	7.8	0
297	â€~Shadow' glass transition in glass. National Science Review, 2021, 8, nwab160.	4.6	0
298	Entropy engineering in inorganic non-metallic glass. Fundamental Research, 2022, , .	1.6	0