Tsuyoshi Saitoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/529023/publications.pdf Version: 2024-02-01

		257450	223800
114	2,686	24	46
papers	citations	h-index	g-index
121	121	121	2409
all docs	docs citations	times ranked	citing authors

Τευνοεμι δλιτομ

#	Article	lF	CITATIONS
1	Dynorphin Acts as a Neuromodulator to Inhibit Itch in the Dorsal Horn of the Spinal Cord. Neuron, 2014, 82, 573-586.	8.1	290
2	In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nature Chemical Biology, 2017, 13, 529-536.	8.0	230
3	Discovery of a Structurally Novel Opioid .KAPPAAgonist Derived from 4,5-Epoxymorphinan Chemical and Pharmaceutical Bulletin, 1998, 46, 366-369.	1.3	167
4	Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5731-5736.	7.1	107
5	Anodic Oxidation on a Boronâ€Doped Diamond Electrode Mediated by Methoxy Radicals. Angewandte Chemie - International Edition, 2012, 51, 5443-5446.	13.8	95
6	Design and Synthesis of Non-Peptide, Selective Orexin Receptor 2 Agonists. Journal of Medicinal Chemistry, 2015, 58, 7931-7937.	6.4	90
7	Rational Drug Design and Synthesis of a Highly Selective Nonpeptide .DELTAOpioid Agonist, (4aS*,12aR*)-4a-(3-Hydroxyphenyl)-2-methyl-1,2,3,4,4a,5,12,12a-octahydropyrido[3,4-b]acridine (TAN-67) Chemical and Pharmaceutical Bulletin, 1998, 46, 1695-1702.	1.3	74
8	Design, synthesis, and structure–activity relationship of novel opioid κ-agonists. Bioorganic and Medicinal Chemistry, 2008, 16, 9188-9201.	3.0	73
9	Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors. Nature Communications, 2018, 9, 2041.	12.8	71
10	Design and synthesis of KNT-127, a δ-opioid receptor agonist effective by systemic administration. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6302-6305.	2.2	66
11	Antinociceptive effects of the selective non-peptidic δ-opioid receptor agonist TAN-67 in diabetic mice. European Journal of Pharmacology, 1995, 276, 131-135.	3.5	58
12	Opioids in Preclinical and Clinical Trials. Topics in Current Chemistry, 2010, 299, 29-62.	4.0	57
13	The pharmacological profile of δ opioid receptor ligands, (+) and (â^') TAN-67 on pain modulation. Life Sciences, 2001, 68, 2227-2231.	4.3	46
14	A solvent-directed stereoselective and electrocatalytic synthesis of diisoeugenol. Chemical Communications, 2018, 54, 2771-2773.	4.1	41
15	Application of Electrochemically Generated Hypervalent Iodine Oxidant to Natural Products Synthesis. Electrochemistry, 2013, 81, 319-324.	1.4	40
16	Design and synthesis of novel delta opioid receptor agonists and their pharmacologies. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2792-2795.	2.2	39
17	Effects of a highly selective nonpeptide l´ opioid receptor agonist, TAN-67, on morphine-induced antinociception in mice. Life Sciences, 1995, 57, 155-168.	4.3	38
18	Drug design and synthesis of a novel κ opioid receptor agonist with an oxabicyclo[2.2.2]octane skeleton and its pharmacology. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 121-124.	2.2	33

#	Article	IF	CITATIONS
19	Design and Synthesis of Potent and Highly Selective Orexin 1 Receptor Antagonists with a Morphinan Skeleton and Their Pharmacologies. Journal of Medicinal Chemistry, 2017, 60, 1018-1040.	6.4	30
20	Enhancing endogenous adenosine A2A receptor signaling induces slow-wave sleep without affecting body temperature and cardiovascular function. Neuropharmacology, 2019, 144, 122-132.	4.1	30
21	Synthesis of a Stable Iminium Salt and Propellane Derivatives. Journal of Organic Chemistry, 2008, 73, 8093-8096.	3.2	27
22	The facility of formation of a .DELTA.6 bond in dihydromorphinone and related opiates. Journal of Organic Chemistry, 1989, 54, 4120-4125.	3.2	26
23	Synthesis of Firefly Luciferin Analogues and Evaluation of the Luminescent Properties. Chemistry - A European Journal, 2016, 22, 9330-9337.	3.3	26
24	Oxidative Cyclization Reactions of Tryptamine Utilizing Hypervalent Iodobenzene in Routes for Pyrroloindole Alkaloid Synthesis. Synthesis, 2012, 44, 1667-1671.	2.3	24
25	Research and development of \hat{I}^{ϱ} opioid receptor agonists and $\hat{I}^{'}$ opioid receptor agonists. , 2020, 205, 107427.		24
26	Novel Synthesis of a 1,3,5-Trioxazatriquinane Skeleton Using a Nitrogen Clamp. Organic Letters, 2009, 11, 539-542.	4.6	23
27	Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors. Cell Reports, 2021, 36, 109558.	6.4	23
28	Essential Structure of the κ Opioid Receptor Agonist Nalfurafine for Binding to the κ Receptor. Current Pharmaceutical Design, 2014, 19, 7400-7414.	1.9	23
29	Nonpeptide Orexin-2 Receptor Agonist Attenuates Morphine-induced Sedative Effects in Rats. Anesthesiology, 2018, 128, 992-1003.	2.5	22
30	Peripheral Opioid Antagonist Enhances the Effect of Anti-Tumor Drug by Blocking a Cell Growth-Suppressive Pathway In Vivo. PLoS ONE, 2015, 10, e0123407.	2.5	21
31	Electrochemical Pinacol Coupling of Acetophenone Using Boronâ€Đoped Diamond Electrode. ChemElectroChem, 2019, 6, 4153-4157.	3.4	21
32	Toward bioluminescence in the near-infrared region: Tuning the emission wavelength of firefly luciferin analogues by allyl substitution. Tetrahedron Letters, 2018, 59, 1087-1090.	1.4	20
33	Efficient synthesis of (±)-parasitenone, a novel inhibitor of NF-κB. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5383-5386.	2.2	19
34	Synthesis of Novel Basic Skeletons Derived from Naltrexone. Topics in Current Chemistry, 2010, 299, 187-237.	4.0	19
35	Essential structure of opioid κ receptor agonist nalfurafine for binding to the κ receptor 2: Synthesis of decahydro(iminoethano)phenanthrene derivatives and their pharmacologies. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5071-5074.	2.2	19
36	Controlled decoration of boron-doped diamond electrodes by electrochemical click reaction (eâ^'CLICK). Carbon, 2018, 130, 350-354.	10.3	18

#	Article	IF	CITATIONS
37	Effects of repeated treatment with a delta opioid receptor agonist KNT-127 on hyperemotionality in olfactory-bulbectomized rats. Behavioural Brain Research, 2017, 323, 11-14.	2.2	17
38	The delta opioid receptor agonist KNT-127 in the prelimbic medial prefrontal cortex attenuates veratrine-induced anxiety-like behaviors in mice. Behavioural Brain Research, 2018, 336, 77-84.	2.2	17
39	DOR2-selective but not DOR1-selective antagonist abolishes anxiolytic-like effects of the δ opioid receptor agonist KNT-127. Neuropharmacology, 2014, 79, 314-320.	4.1	16
40	Design and synthesis of quinolinopropellane derivatives with selective δopioid receptor agonism. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2851-2854.	2.2	16
41	Naltrindole derivatives with fluorinated ethyl substituents on the 17-nitrogen as δ opioid receptor inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2927-2930.	2.2	16
42	Essential Structure of Opioid κ Receptor Agonist Nalfurafine for Binding to κ Receptor 1: Synthesis of Decahydroisoquinoline Derivatives and Their Pharmacologies. Chemical and Pharmaceutical Bulletin, 2012, 60, 945-948.	1.3	15
43	Determination of topological structure of ARL6ip1 in cells: Identification of the essential binding region of ARL6ip1 for conophylline. FEBS Letters, 2013, 587, 3656-3660.	2.8	15
44	Synthesis of (+)â€∢i>Oâ€Methylthalibrine by Employing a Stereocontrolled Bischler–Napieralski Reaction and an Electrochemically Generated Diaryl Ether. European Journal of Organic Chemistry, 2014, 2014, 99-104.	2.4	15
45	Modulation of glutamatergic synaptic transmission and neuronal excitability in the prelimbic medial prefrontal cortex via delta-opioid receptors in mice. Biochemical and Biophysical Research Communications, 2021, 560, 192-198.	2.1	15
46	A Double Decarboxylation Reaction of an Oxazolidinone and Carboxylic Acid: Its Application to the Synthesis of a New Opioid Lead Compound. Journal of Organic Chemistry, 2010, 75, 995-998.	3.2	14
47	Opioid δ1 receptor antagonist 7-benzylidenenaltrexone as an effective resistance reverser for chloroquine-resistant Plasmodium chabaudi. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4710-4712.	2.2	14
48	Investigation of 7-benzylidenenaltrexone derivatives as resistance reverser for chloroquine-resistant Plasmodium chabaudi. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5174-5176.	2.2	14
49	Synthesis and Pharmacology of a Novel κ Opioid Receptor (KOR) Agonist with a 1,3,5-Trioxazatriquinane Skeleton. ACS Medicinal Chemistry Letters, 2014, 5, 868-872.	2.8	14
50	Modulation of NMDA- and (+)TAN-67-induced nociception by GABAB receptors in the mouse spinal cord. Life Sciences, 2000, 68, 719-725.	4.3	13
51	Delta Opioid Receptor (DOR) Ligands and Pharmacology: Development of Indolo- and Quinolinomorphinan Derivatives Based on the Message-Address Concept. Handbook of Experimental Pharmacology, 2016, 247, 3-19.	1.8	13
52	Essential structure of orexin 1 receptor antagonist YNT-707, Part I: Role of the 4,5-epoxy ring for binding with orexin 1 receptor. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4176-4179.	2.2	13
53	Development of Glycosylation Using the Glucopyranose 1,2-Orthobenzoate under Electrochemical Conditions. Organic Letters, 2013, 15, 5484-5487.	4.6	12
54	The application of a specific morphinan template to the synthesis of galanthamine. Tetrahedron, 2017, 73, 5751-5758.	1.9	12

#	Article	IF	CITATIONS
55	Essential structure of orexin 1 receptor antagonist YNT-707, Part II: Drastic effect of the 14-hydroxy group on the orexin 1 receptor antagonistic activity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 774-777.	2.2	12
56	Syntheses of Potential Metabolites of a Potent .KAPPAOpioid Receptor Agonist, TRK-820. Chemical and Pharmaceutical Bulletin, 2004, 52, 670-674.	1.3	11
57	Synthesis and assignment of the absolute stereochemistry ofÂ(+)-hemifistularin 3. Tetrahedron, 2014, 70, 6392-6397.	1.9	11
58	Administration of a delta opioid receptor agonist KNT-127 to the basolateral amygdala has robust anxiolytic-like effects in rats. Psychopharmacology, 2018, 235, 2947-2955.	3.1	11
59	Selective agonists of the δ-opioid receptor, KNT-127 and SNC80, act differentially on extinction learning of contextual fear memory in mice. Neuropharmacology, 2019, 160, 107792.	4.1	11
60	Oxidative Cleavage of the Acyl arbon Bond in Phenylacetone with Electrogenerated Superoxide Anions. ChemElectroChem, 2019, 6, 4194-4198.	3.4	11
61	Delta Opioid Receptor Agonists Ameliorate Colonic Inflammation by Modulating Immune Responses. Frontiers in Immunology, 2021, 12, 730706.	4.8	11
62	Synthesis of novel triplet drugs with 1,3,5-trioxazatriquinane skeletons and their pharmacologies. Part 2: Synthesis of novel triplet drugs with the epoxymethano structure (capped homotriplet). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6198-6202.	2.2	10
63	Synthesis of novel triplet drugs with 1,3,5-trioxazatriquinane skeletons and their pharmacologies. 1: Synthesis of triplet drugs with morphinan skeletons. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4023-4026.	2.2	10
64	Synthesis of Novel Triplets with a 1,3,5â€Trioxazatriquinane Skeleton and Their Pharmacologies for Opioid Receptors. Archiv Der Pharmazie, 2015, 348, 375-389.	4.1	10
65	Transformation of naltrexone into mesembrane and investigation of the binding properties of its intermediate derivatives to opioid receptors. Bioorganic and Medicinal Chemistry, 2015, 23, 439-448.	3.0	10
66	Investigation of 7-benzylidenenaltrexone derivatives as a novel structural antitrichomonal lead compound. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4890-4892.	2.2	10
67	Synthesis of new opioid derivatives with a propellane skeleton and their pharmacologies: Part 5, novel pentacyclic propellane derivatives with a 6-amide side chain. Bioorganic and Medicinal Chemistry, 2015, 23, 6271-6279.	3.0	10
68	Lip closure training improves eating behaviors and prefrontal cortical hemodynamic activity and decreases daytime sleep in elderly persons. Journal of Bodywork and Movement Therapies, 2018, 22, 810-816.	1.2	10
69	Essential structure of opioid κ receptor agonist nalfurafine for binding to the κ receptor 3: Synthesis of decahydro(iminoethano)phenanthrene derivatives with an oxygen functionality at the 3-position and their pharmacologies. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7711-7714.	2.2	9
70	Synthesis of a novel universal opioid receptor agonist with the 1,3,5-trioxazatriquinane skeleton and its pharmacologies. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4895-4898.	2.2	9
71	A delta opioid receptor agonist, KNT-127, in the prelimbic medial prefrontal cortex attenuates glial glutamate transporter blocker-induced anxiety-like behavior in mice. Journal of Pharmacological Sciences, 2018, 138, 176-183.	2.5	9
72	Essential structure of orexin 1 receptor antagonist YNT-707, part III: Role of the 14-hydroxy and the 3-methoxy groups in antagonistic activity toward the orexin 1 receptor in YNT-707 derivatives lacking the 4,5-epoxy ring. Bioorganic and Medicinal Chemistry, 2019, 27, 1747-1758.	3.0	9

#	Article	IF	CITATIONS
73	A new NF-κB inhibitor based on the amino-epoxyquinol core of DHMEQ. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5638-5642.	2.2	8
74	Novel Delta Opioid Receptor Agonists with Oxazatricyclodecane Structure. ACS Medicinal Chemistry Letters, 2014, 5, 368-372.	2.8	8
75	Asymmetric induction in cyclohexadienones carrying α-d-glucopyranosyl moiety. Tetrahedron, 2016, 72, 8428-8435.	1.9	8
76	Antitrichomonal activity of δopioid receptor antagonists, 7-benzylidenenaltrexone derivatives. Bioorganic and Medicinal Chemistry, 2017, 25, 4375-4383.	3.0	8
77	Effects of the delta opioid receptor agonist KNT-127 on electroencephalographic activity in mice. Pharmacological Reports, 2018, 70, 350-354.	3.3	8
78	Essential structure of orexin 1 receptor antagonist YNT-707, Part IV: The role of D-ring in 4,5-epoxymorphinan on the orexin 1 receptor antagonistic activity. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2655-2658.	2.2	8
79	Anodic Oxidation of Phenols: A Key Step for the Synthesis of Natural Products. Chemical Record, 2021, 21, 2254-2268.	5.8	8
80	A selective delta opioid receptor agonist SNC80, but not KNT-127, induced tremor-like behaviors via hippocampal glutamatergic system in mice. Brain Research, 2021, 1757, 147297.	2.2	8
81	Investigation of Beckett–Casy model 3: Synthesis of novel naltrexone derivatives with contracted and expanded D-rings and their pharmacology. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3801-3804.	2.2	7
82	Synthesis of new opioid derivatives with a propellane skeleton and their pharmacology. Part 2: Propellane derivatives with an amide side chain. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2775-2779.	2.2	7
83	Click Reaction Based on the Biosynthesis of Firefly Luciferin. Chemistry Letters, 2017, 46, 753-755.	1.3	7
84	Systemic administration of a delta opioid receptor agonist, KNT-127, facilitates extinction learning of fear memory in rats. Journal of Pharmacological Sciences, 2019, 139, 174-179.	2.5	6
85	Discovery of attenuation effect of orexin 1 receptor to aversion of nalfurafine: Synthesis and evaluation of D-nor-nalfurafine derivatives and analyses of the three active conformations of nalfurafine. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127360.	2.2	6
86	Topical administration of the kappa opioid receptor agonist nalfurafine suppresses corneal neovascularization and inflammation. Scientific Reports, 2021, 11, 8647.	3.3	6
87	Design and synthesis of novel orexin 2 receptor agonists based on naphthalene skeleton. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128530.	2.2	6
88	Discovery of orexin 2 receptor selective and dual orexin receptor agonists based on the tetralin structure: Switching of receptor selectivity by chirality on the tetralin ring. Bioorganic and Medicinal Chemistry Letters, 2022, 60, 128555.	2.2	6
89	Investigation of Beckett–Casy model 2: Synthesis of novel 15–16 nornaltrexone derivatives and their pharmacology. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3726-3729.	2.2	5
90	Design and synthesis of novel δ opioid receptor agonists with an azatricyclodecane skeleton for improving blood-brain barrier penetration. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3495-3498.	2.2	5

#	Article	IF	CITATIONS
91	Synthesis of heterocyclic compounds with adamantane-like cage structures consisting of phosphorus, sulfur, and carbon. Tetrahedron, 2017, 73, 5214-5219.	1.9	5
92	Favorskii-Type Rearrangement of the 4,5-Epoxymorphinan Skeleton. Organic Letters, 2018, 20, 1559-1562.	4.6	5
93	Development of a luminescence-controllable firefly luciferin analogue using selective enzymatic cyclization. Tetrahedron, 2016, 72, 7505-7508.	1.9	4
94	Novel delta opioid receptor agonists with oxazatricyclodecane structure showing potent agonistic activities. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2742-2745.	2.2	4
95	Acetic Anhydride Mediated Retro-Ene Reaction via a [4.4.3]PropelÂlane Skeleton Intermediate Containing a Quaternary Ammonium Linkage. Synthesis, 2018, 50, 4263-4269.	2.3	4
96	Essential structure of orexin 1 receptor antagonist YNT-707, part V: Structure-activity relationship study of the substituents on the 17-amino group. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126893.	2.2	4
97	Cold-Restraint Stress-Induced Ultrasonic Vocalization as a Novel Tool to Measure Anxiety in Mice. Biological and Pharmaceutical Bulletin, 2022, 45, 268-275.	1.4	4
98	Essential structure of orexin 1 receptor antagonist YNT-707: Conversion of the 16-cyclopropylmethyl group to the 16-sulfonamide group in d-nor-nalfurafine derivatives. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128550.	2.2	4
99	Selective δ-Opioid Receptor Agonist, KNT-127, Facilitates Contextual Fear Extinction via Infralimbic Cortex and Amygdala in Mice. Frontiers in Behavioral Neuroscience, 2022, 16, 808232.	2.0	4
100	Design and synthesis of biotinylated DHMEQ for direct identification of its target NF-κB components. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6293-6296.	2.2	3
101	Structure-Activity Relationship between Thiol Group-Trapping Ability of Morphinan Compounds with a Michael Acceptor and Anti-Plasmodium falciparum Activities. Molecules, 2020, 25, 1112.	3.8	3
102	Rational Drug Design of .DELTA. Opioid Receptor Agonist TAN-67. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 371-381.	0.1	3
103	Synthesis of unnatural morphinan compounds to induce itch-like behaviors in mice: Towards the development of MRGPRX2 selective ligands. Bioorganic and Medicinal Chemistry Letters, 2022, 56, 128485.	2.2	3
104	Morphinan derivatives with an oxabicyclo[3.2.1]octane structure as dual agonists toward δ and κ opioid receptors. Bioorganic and Medicinal Chemistry, 2022, 53, 116552.	3.0	3
105	Effect of removal of the 14-hydroxy group on the affinity of the 4,5-epoxymorphinan derivatives for orexin and opioid receptors. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128527.	2.2	2
106	Discovery of novel orexin receptor antagonists using a 1,3,5-trioxazatriquinane bearing multiple effective residues (TriMER) library. European Journal of Medicinal Chemistry, 2022, 240, 114505.	5.5	2
107	Glycosylation of a Newly Functionalized Orthoester Derivative. Molecules, 2014, 19, 2602-2611.	3.8	1
108	Novel Baeyer–Villiger-type oxidation of 4,5-epoxymorphinan derivatives. Tetrahedron Letters, 2021, 63, 152714.	1.4	1

#	Article	IF	CITATIONS
109	Chemistry of opioids. Preface. Topics in Current Chemistry, 2011, 299, ix-xi.	4.0	1
110	Encounter Leading to Success. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 162-165.	0.1	0
111	Design and Synthesis of Novel Orexin Antagonists via Structural Simplification of the Morphinan Skeleton. Heterocycles, 2021, 103, 929.	0.7	Ο
112	Orexin agonist improves inflammation-induced immobility. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR23-1.	0.0	0
113	Unique Reactions of Morphinan Skeletons and Conversions of the Skeletons to Active Alkaloids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 914-921.	0.1	Ο
114	A Novel Rearrangement Reaction of Morphinan to Arylmorphan Skeletons and the Pharmacologies of Arylmorphan Derivatives. Heterocycles, 2019, 99, 134.	0.7	0