Jamieson Christie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528985/publications.pdf

Version: 2024-02-01

567281 552781 27 652 15 26 citations h-index g-index papers 29 29 29 649 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorine Environment in Bioactive Glasses: <i>ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 2038-2045.	2.6	79
2	Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium. Physical Chemistry Chemical Physics, 2011, 13, 17749.	2.8	65
3	Aluminosilicate Glasses As Yttrium Vectors for in situ Radiotherapy: Understanding Composition-Durability Effects through Molecular Dynamics Simulations. Chemistry of Materials, 2010, 22, 3725-3734.	6.7	52
4	Investigating structural features which control the dissolution of bioactive phosphate glasses: Beyond the network connectivity. Journal of Non-Crystalline Solids, 2016, 432, 31-34.	3.1	46
5	Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials, 2014, 35, 6164-6171.	11.4	42
6	Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. Journal of Materials Chemistry, 2012, 22, 12023.	6.7	37
7	Polarizable force field development and molecular dynamics study of phosphate-based glasses. Journal of Chemical Physics, 2012, 137, 234502.	3.0	33
8	Nanoscale Chains Control the Solubility of Phosphate Glasses for Biomedical Applications. Journal of Physical Chemistry B, 2013, 117, 10652-10657.	2.6	33
9	Molecular Dynamics Simulations and Structural Descriptors of Radioisotope Glass Vectors for In Situ Radiotherapy. Journal of Physical Chemistry B, 2012, 116, 12614-12620.	2.6	28
10	Polarizable interatomic force field for <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mrow><mml:mn> using density functional theory. Physical Review B, 2010, 81, .</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	∙2 <i>⊲in</i> aml:n	nn 27 /mml:msı
11	Shortâ€Range Structure of Yttrium Aluminoâ€Silicate Glass for Cancer Radiotherapy: Car–Parrinello Molecular Dynamics Simulations. Advanced Engineering Materials, 2010, 12, B326.	3.5	26
12	Properties of water confined in hydroxyapatite nanopores as derived from molecular dynamics simulations. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	22
13	Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffraction. Physical Chemistry Chemical Physics, 2017, 19, 8504-8515.	2.8	21
14	Effect of strontium inclusion on the bioactivity of phosphate-based glasses. Journal of Materials Science, 2017, 52, 9014-9022.	3.7	21
15	Structures and properties of phosphate-based bioactive glasses from computer simulation: a review. Journal of Materials Chemistry B, 2017, 5, 5297-5306.	5.8	19
16	Structural characteristics of positionally disordered lattices: Relation to the first sharp diffraction peak in glasses. Physical Review B, 2004, 70, .	3.2	13
17	Modeling the atomic structure of very high-density amorphous ice. Physical Review B, 2005, 72, .	3.2	13
18	On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2014, 16, 21135-21143.	2.8	12

#	ARTICLE	lF	CITATION
19	Atomic structure of biodegradable Mg-based bulk metallic glass. Physical Chemistry Chemical Physics, 2015, 17, 12894-12898.	2.8	12
20	Vibrational behavior of a realistic amorphous-silicon model. Journal of Non-Crystalline Solids, 2007, 353, 2272-2279.	3.1	10
21	Atomic structure and dissolution properties of yttriumâ€containing phosphate glasses. International Journal of Applied Glass Science, 2017, 8, 412-417.	2.0	10
22	Bioactive Sol–Gel Glasses at the Atomic Scale: The Complementary Use of Advanced Probe and Computer Modeling Methods. International Journal of Applied Glass Science, 2016, 7, 147-153.	2.0	9
23	Positional disorder in lattices: a model for the structural order responsible for the first sharp diffraction peak in glasses. Journal of Physics Condensed Matter, 2004, 16, S5109-S5120.	1.8	5
24	Structural properties and phase transitions in a silica clathrate. Journal of Chemical Physics, 2011, 134, 074506.	3.0	5
25	Atomic-scale clustering inhibits the bioactivity of fluoridated phosphate glasses. Biomedical Glasses, 2019, 5, 76-84.	2.4	5
26	Carbon dioxide and water incorporation mechanisms in SrFeO _{3â^î^(} phases: a computational study. Physical Chemistry Chemical Physics, 2020, 22, 25146-25155.	2.8	4
27	Atomic vibrations in disordered systems: Comparison of disordered diamond lattices and a realistic amorphous silicon model. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1 , 2904-2907.	0.8	2