Robert B Griffiths

List of Publications by Citations

Source: https://exaly.com/author-pdf/5289595/robert-b-griffiths-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

137
papers

12,423
citations

54
h-index

9-index

140
ext. papers

23,143
ext. citations

3
citations

40,47
citations

40,47
citations

40,47
citations

#	Paper	IF	Citations
137	Ising Model for the Transition and Phase Separation in He3-He4 Mixtures. <i>Physical Review A</i> , 1971 , 4, 1071-1077	2.6	1277
136	Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet. <i>Physical Review Letters</i> , 1969 , 23, 17-19	7.4	1193
135	Consistent histories and the interpretation of quantum mechanics. <i>Journal of Statistical Physics</i> , 1984 , 36, 219-272	1.5	721
134	Critical Points in Multicomponent Systems. <i>Physical Review A</i> , 1970 , 2, 1047-1064	2.6	674
133	Thermodynamics Near the Two-Fluid Critical Mixing Point in He3 - He4. <i>Physical Review Letters</i> , 1970 , 24, 715-717	7.4	373
132	Thermodynamic Functions for Fluids and Ferromagnets near the Critical Point. <i>Physical Review</i> , 1967 , 158, 176-187		368
131	Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. <i>Physical Review A</i> , 1997 , 56, 1163-1172	2.6	345
130	Correlations in Ising Ferromagnets. I. <i>Journal of Mathematical Physics</i> , 1967 , 8, 478-483	1.2	342
129	Magnetization Curve at Zero Temperature for the Antiferromagnetic Heisenberg Linear Chain. <i>Physical Review</i> , 1964 , 133, A768-A775		333
128	Dependence of Critical Indices on a Parameter. <i>Physical Review Letters</i> , 1970 , 24, 1479-1482	7.4	277
127	Lattice-gas model of multiple layer adsorption. <i>Surface Science</i> , 1978 , 71, 687-694	1.8	242
126	Spin systems on hierarchical lattices. Introduction and thermodynamic limit. <i>Physical Review B</i> , 1982 , 26, 5022-5032	3.3	241
125	Proposal for Notation at Tricritical Points. <i>Physical Review B</i> , 1973 , 7, 545-551	3.3	228
124	Semiclassical Fourier transform for quantum computation. <i>Physical Review Letters</i> , 1996 , 76, 3228-3231	7.4	213
123	Thermodynamic model for tricritical points in ternary and quaternary fluid mixtures. <i>Journal of Chemical Physics</i> , 1974 , 60, 195-206	3.9	201
122	The (国)2 field theory as a classical Ising model. <i>Communications in Mathematical Physics</i> , 1973 , 33, 145-1	6 <u>4</u>	201
121	Global phase diagram for a three-component model. <i>Physical Review B</i> , 1977 , 15, 441-464	3.3	187

120	Exactly soluble Ising models on hierarchical lattices. <i>Physical Review B</i> , 1981 , 24, 496-498	3.3	183
119	Correlations in Ising Ferromagnets. II. External Magnetic Fields. <i>Journal of Mathematical Physics</i> , 1967 , 8, 484-489	1.2	182
118	Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field. <i>Journal of Mathematical Physics</i> , 1970 , 11, 790-795	1.2	179
117	Rigorous Results for Ising Ferromagnets of Arbitrary Spin. <i>Journal of Mathematical Physics</i> , 1969 , 10, 1559-1565	1.2	177
116	Peierls Proof of Spontaneous Magnetization in a Two-Dimensional Ising Ferromagnet. <i>Physical Review</i> , 1964 , 136, A437-A439		175
115	A Proof that the Free Energy of a Spin System is Extensive. <i>Journal of Mathematical Physics</i> , 1964 , 5, 12	15:2122	2166
114	Thermodynamic Properties near the Liquid-Vapor Critical Line in Mixtures of He3 and He4. <i>Physical Review A</i> , 1973 , 8, 2670-2683	2.6	136
113	Relaxation Times for Metastable States in the Mean-Field Model of a Ferromagnet. <i>Physical Review</i> , 1966 , 149, 301-305		123
112	Free Energy of Interacting Magnetic Dipoles. <i>Physical Review</i> , 1968 , 176, 655-659		118
111	Consistent histories and quantum reasoning. <i>Physical Review A</i> , 1996 , 54, 2759-2774	2.6	113
111	Consistent histories and quantum reasoning. <i>Physical Review A</i> , 1996 , 54, 2759-2774 Ferromagnets and Simple Fluids near the Critical Point: Some Thermodynamic Inequalities. <i>Journal of Chemical Physics</i> , 1965 , 43, 1958-1968	2.6 3.9	113
	Ferromagnets and Simple Fluids near the Critical Point: Some Thermodynamic Inequalities. <i>Journal</i>		, in the second
110	Ferromagnets and Simple Fluids near the Critical Point: Some Thermodynamic Inequalities. <i>Journal of Chemical Physics</i> , 1965 , 43, 1958-1968 Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets. <i>Physical Review Letters</i> , 1971 ,	3·9 7·4	108
110	Ferromagnets and Simple Fluids near the Critical Point: Some Thermodynamic Inequalities. <i>Journal of Chemical Physics</i> , 1965 , 43, 1958-1968 Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets. <i>Physical Review Letters</i> , 1971 , 27, 1439-1442	3.9 7.4 -27.66	108
110	Ferromagnets and Simple Fluids near the Critical Point: Some Thermodynamic Inequalities. <i>Journal of Chemical Physics</i> , 1965 , 43, 1958-1968 Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets. <i>Physical Review Letters</i> , 1971 , 27, 1439-1442 Two-qubit copying machine for economical quantum eavesdropping. <i>Physical Review A</i> , 1999 , 60, 2764-	3.9 7.4 -27.66	108 106 102
110 109 108	Ferromagnets and Simple Fluids near the Critical Point: Some Thermodynamic Inequalities. <i>Journal of Chemical Physics</i> , 1965 , 43, 1958-1968 Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets. <i>Physical Review Letters</i> , 1971 , 27, 1439-1442 Two-qubit copying machine for economical quantum eavesdropping. <i>Physical Review A</i> , 1999 , 60, 2764-Ground states of one-dimensional systems using effective potentials. <i>Physical Review B</i> , 1986 , 34, 6219 Consistent interpretation of quantum mechanics using quantum trajectories. <i>Physical Review</i>	3.9 7.4 -27.76	108 106 102 100
110 109 108 107	Ferromagnets and Simple Fluids near the Critical Point: Some Thermodynamic Inequalities. <i>Journal of Chemical Physics</i> , 1965 , 43, 1958-1968 Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets. <i>Physical Review Letters</i> , 1971 , 27, 1439-1442 Two-qubit copying machine for economical quantum eavesdropping. <i>Physical Review A</i> , 1999 , 60, 2764-Ground states of one-dimensional systems using effective potentials. <i>Physical Review B</i> , 1986 , 34, 6219 Consistent interpretation of quantum mechanics using quantum trajectories. <i>Physical Review Letters</i> , 1993 , 70, 2201-2204 Spin systems on hierarchical lattices. II. Some examples of soluble models. <i>Physical Review B</i> , 1984 ,	3·9 7·4 -27.66 -6234 7·4	108 106 102 100

102	Spontaneous Magnetization in Idealized Ferromagnets. <i>Physical Review</i> , 1966 , 152, 240-246		91
101	Phase diagrams and higher-order critical points. <i>Physical Review B</i> , 1975 , 12, 345-355	3.3	87
100	Thermodynamic Inequality Near the Critical Point for Ferromagnets and Fluids. <i>Physical Review Letters</i> , 1965 , 14, 623-624	7.4	85
99	Correlations in Ising ferromagnets. III. Communications in Mathematical Physics, 1967 , 6, 121-127	2	84
98	Consistent Quantum Theory 2001 ,		84
97	Microcanonical Ensemble in Quantum Statistical Mechanics. <i>Journal of Mathematical Physics</i> , 1965 , 6, 1447-1461	1.2	83
96	Effective potentials: A new approach and new results for one-dimensional systems with competing length scales. <i>Physical Review Letters</i> , 1986 , 56, 1929-1931	7.4	79
95	Correlations in separated quantum systems: A consistent history analysis of the EPR problem. <i>American Journal of Physics</i> , 1987 , 55, 11-17	0.7	78
94	Global phase diagram for a Van der Waals model of a binary mixture. <i>Physical Review A</i> , 1978 , 17, 1139-	1 1.4 8	76
93	Mathematical properties of position-space renormalization-group transformations. <i>Journal of Statistical Physics</i> , 1979 , 20, 499-545	1.5	75
92	Multicomponent-Fluid Tricritical Points. <i>Physical Review A</i> , 1973 , 8, 2173-2175	2.6	72
91	Random Spin Systems: Some Rigorous Results. <i>Journal of Mathematical Physics</i> , 1968 , 9, 1284-1292	1.2	69
90	Consistent Histories and Quantum Measurements. <i>Physics Today</i> , 1999 , 52, 26-31	0.9	66
89	Position-Space Renormalization-Group Transformations: Some Proofs and Some Problems. <i>Physical Review Letters</i> , 1978 , 41, 917-920	7.4	65
88	Quantum-error-correcting codes using qudit graph states. <i>Physical Review A</i> , 2008 , 78,	2.6	64
87	Evidence for Exchange-Coupled Linear Chains in Cu(NH3)4SO4[H2O. <i>Physical Review</i> , 1964 , 135, A659-A	\660	64
86	Antiferromagnetic Transition in CoCl2l6H2O and Fisher's Relation. <i>Physical Review</i> , 1967 , 164, 705-709		57
85	Strict convexity (dontinuity) of the pressure in lattice systems. <i>Communications in Mathematical Physics</i> , 1971 , 23, 169-175	2	56

84	Optimal copying of one quantum bit. <i>Physical Review A</i> , 1998 , 58, 4377-4393	2.6	55	
83	Chemical potential by gradual insertion of a particle in Monte Carlo simulation. <i>Physical Review A</i> , 1985 , 31, 956-959	2.6	53	
82	Information-theoretic treatment of tripartite systems and quantum channels. <i>Physical Review A</i> , 2011 , 83,	2.6	52	
81	EPR, Bell, and quantum locality. American Journal of Physics, 2011, 79, 954-965	0.7	49	
80	Consistent quantum counterfactuals. <i>Physical Review A</i> , 1999 , 60, R5-R8	2.6	42	
79	Thermodynamic Bounds on Constant-Volume Heat Capacities and Adiabatic Compressibilities. <i>Physical Review</i> , 1968 , 170, 249-256		39	
78	Particle path through a nested Mach-Zehnder interferometer. <i>Physical Review A</i> , 2016 , 94,	2.6	38	
77	Bohmian mechanics and consistent histories. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 261, 227-234	2.3	34	
76	Critical Temperatures of Anisotropic Ising Lattices. I. Lower Bounds. <i>Physical Review</i> , 1967 , 162, 475-47	79	34	
75	Deterministic and unambiguous dense coding. <i>Physical Review A</i> , 2006 , 73,	2.6	32	
74	Comment on Consistent Sets Yield Contrary Inferences in Quantum Theory (1998) Physical Review Letters, 1998, 81, 1981-1981	7.4	32	
73	Mathematical properties of renormalization-group transformations. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1981 , 106, 59-69	3.3	31	
7 ²	Separable operations on pure states. <i>Physical Review A</i> , 2008 , 78,	2.6	30	
71	Efficient implementation of bipartite nonlocal unitary gates using prior entanglement and classical communication. <i>Physical Review A</i> , 2010 , 81,	2.6	29	
7º	Quantum Locality. Foundations of Physics, 2011, 41, 705-733	1.2	28	
69	First-order transitions in defect structures at a second-order critical point for the Potts model on hierarchical lattices. <i>Physical Review B</i> , 1982 , 26, 5282-5284	3.3	27	
68	Convexity violations for noninteger parameters in certain lattice models. <i>Journal of Statistical Physics</i> , 1983 , 30, 563-589	1.5	26	
67	Thermodynamic model for tricritical mixtures with application to ammonium sulfate + water + ethanol + benzene. <i>Journal of Chemical Physics</i> , 1982 , 76, 1508-1524	3.9	26	

66	Convexity of the free energy in some real-space renormalization-group approximations. <i>Physical Review B</i> , 1983 , 28, 3864-3865	3.3	25
65	A consistent quantum ontology. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 2013 , 44, 93-114	1	24
64	The consistency of consistent histories: A reply to d'Espagnat. Foundations of Physics, 1993, 23, 1601-1	61 <u>1</u> 02	24
63	The New Quantum Logic. Foundations of Physics, 2014, 44, 610-640	1.2	23
62	Entanglement requirements for implementing bipartite unitary operations. <i>Physical Review A</i> , 2011 , 84,	2.6	23
61	Optimal eavesdropping in quantum cryptography. II. A quantum circuit. <i>Physical Review A</i> , 1997 , 56, 1173-1176	2.6	23
60	Interface interactions in modulated phases, and upsilon points. <i>Journal of Statistical Physics</i> , 1991 , 62, 45-88	1.5	23
59	Numerical procedure for solving a minimization eigenvalue problem. <i>Numerische Mathematik</i> , 1989 , 55, 565-574	2.2	23
58	Ferromagnetic Heat Capacity in an External Magnetic Field near the Critical Point. <i>Physical Review</i> , 1969 , 188, 942-947		23
57	The order parameter in a spin glass. <i>Communications in Mathematical Physics</i> , 1983 , 90, 319-327	2	22
56	Thermodynamic Model and Sum Rules for Three-Phase Coexistence near the Tricritical Point in a Liquid Mixture. <i>Physical Review Letters</i> , 1980 , 44, 77-80	7.4	22
55	Phase transitions in anisotropic classical Heisenberg ferromagnets. <i>Communications in Mathematical Physics</i> , 1972 , 26, 102-108	2	20
54	Atemporal diagrams for quantum circuits. <i>Physical Review A</i> , 2006 , 73,	2.6	19
53	Types of quantum information. <i>Physical Review A</i> , 2007 , 76,	2.6	18
52	Channel kets, entangled states, and the location of quantum information. <i>Physical Review A</i> , 2005 , 71,	2.6	18
51	Ising-Model Surface Tension Using Real-Space Renormalization-Group Methods. <i>Physical Review Letters</i> , 1978 , 40, 977-980	7.4	18
50	What quantum measurements measure. <i>Physical Review A</i> , 2017 , 96,	2.6	17
49	Physical adsorption on patchwise heterogeneous surfaces. 3. Continuous phase transitions of krypton monolayers on (0001) graphite. <i>The Journal of Physical Chemistry</i> , 1977 , 81, 2171-2176		16

48	Nature and location of quantum information. Physical Review A, 2002, 66,	2.6	14
47	Phase transition in a ferromagnetic fluid. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1986 , 138, 220-230	3.3	14
46	Nonlocality claims are inconsistent with Hilbert-space quantum mechanics. <i>Physical Review A</i> , 2020 , 101,	2.6	13
45	Equivalence of certain convex and nonconvex models of spatially modulated structures. <i>Journal of Statistical Physics</i> , 1988 , 53, 1031-1040	1.5	13
44	Location of quantum information in additive graph codes. Physical Review A, 2010, 81,	2.6	12
43	Localized defects in classical one-dimensional models. <i>Journal of Statistical Physics</i> , 1988 , 53, 853-892	1.5	12
42	A search for multicritical points in liquid mixtures: The shield region and the three-state Potts point. <i>Journal of Chemical Physics</i> , 1979 , 70, 5555-5566	3.9	12
41	Griffiths-Hurst-Sherman Inequalities and a Lee-Yang Therorem for the (?4)2 Field Theory. <i>Physical Review Letters</i> , 1973 , 30, 931-933	7.4	11
40	Consistent quantum measurements. <i>Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics</i> , 2015 , 52, 188-197	1	10
39	Consistent histories, quantum truth functionals, and hidden variables. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2000 , 265, 12-19	2.3	10
38	Numerical study of a new type of nonconvex Frenkel-Kontorova model. <i>Physical Review B</i> , 1994 , 49, 90-	4-9.35	10
37	Exactly solvable model for cantorus phase transitions. <i>Physical Review Letters</i> , 1990 , 65, 2551-2554	7.4	10
36	Fast protocols for local implementation of bipartite nonlocal unitaries. <i>Physical Review A</i> , 2012 , 85,	2.6	9
35	Entanglement transformations using separable operations. <i>Physical Review A</i> , 2007 , 76,	2.6	9
34	Consistent Quantum Realism: A Reply to Bassi and Ghirardi. <i>Journal of Statistical Physics</i> , 2000 , 99, 1409	9- <u>1</u> 1. 4 25	9
33	Heat Capacity Singularity for a Ferromagnet in a Finite Applied Field. <i>Journal of Applied Physics</i> , 1969 , 40, 1542-1543	2.5	9
32	Hilbert space quantum mechanics is noncontextual. <i>Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics</i> , 2013 , 44, 174-181	1	8
31	Tripartite entanglement in qudit stabilizer states and application in quantum error correction. <i>Physical Review A</i> , 2011 , 84,	2.6	8

30	Consistent resolution of some relativistic quantum paradoxes. <i>Physical Review A</i> , 2002 , 66,	2.6	8
29	Free Energy of the Antiferromagnetic Linear Chain. <i>Physical Review</i> , 1964 , 136, A751-A752		8
28	Reply to Comment on Particle path through a nested Mach-Zehnder interferometer Physical Review A, 2017 , 95,	2.6	7
27	Quantum Counterfactuals and Locality. Foundations of Physics, 2012, 42, 674-684	1.2	7
26	Consistent histories for tunneling molecules subject to collisional decoherence. <i>Physical Review A</i> , 2012 , 86,	2.6	6
25	Structure and motion of the LeeBang zeros. <i>Journal of Mathematical Physics</i> , 1983 , 24, 2637-2647	1.2	5
24	Surface tension and stress in solids: The rigid-planes model. <i>Physical Review B</i> , 1985 , 32, 3194-3202	3.3	5
23	Surface stress and surface tension for solid-vapor interfaces. Surface Science, 1985, 162, 114-119	1.8	5
22	Consistent Histories 2009 , 117-122		5
21	. IEEE Transactions on Information Theory, 2021 , 67, 4533-4545	2.8	5
21	. IEEE Transactions on Information Theory, 2021, 67, 4533-4545 Reply to Comment on Particle path through a nested Mach-Zehnder interferometer' []Physical Review A, 2018, 97,	2.8	5
	Reply to Comment on Particle path through a nested Mach-Zehnder interferometer' []Physical		
20	Reply to Comment on Particle path through a nested Mach-Zehnder interferometer' []Physical Review A, 2018, 97,	2.6	
20	Reply to Comment on Particle path through a nested Mach-Zehnder interferometer' []Physical Review A, 2018, 97, Probabilities and Quantum Reality: Are There Correlata?. Foundations of Physics, 2003, 33, 1423-1459 Empty waves: A genuine effect?. Physics Letters, Section A: General, Atomic and Solid State Physics,	2.6	4
20 19 18	Reply to Comment on Particle path through a nested Mach-Zehnder interferometer' []Physical Review A, 2018, 97, Probabilities and Quantum Reality: Are There Correlata?. Foundations of Physics, 2003, 33, 1423-1459 Empty waves: A genuine effect?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 178, 17-21 Quantum measurements and contextuality. Philosophical Transactions Series A, Mathematical,	2.6	4 4
20 19 18	Reply to Comment on Particle path through a nested Mach-Zehnder interferometer' []Physical Review A, 2018, 97, Probabilities and Quantum Reality: Are There Correlata?. Foundations of Physics, 2003, 33, 1423-1459 Empty waves: A genuine effect?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 178, 17-21 Quantum measurements and contextuality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190033 Degradable quantum channels using pure-state to product-of-pure-state isometries. Physical	2.6 1.2 2.3	4 4 3
20 19 18 17	Reply to Comment on Particle path through a nested Mach-Zehnder interferometer' []Physical Review A, 2018, 97, Probabilities and Quantum Reality: Are There Correlata?. Foundations of Physics, 2003, 33, 1423-1459 Empty waves: A genuine effect?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 178, 17-21 Quantum measurements and contextuality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190033 Degradable quantum channels using pure-state to product-of-pure-state isometries. Physical Review A, 2016, 94,	2.6 1.2 2.3 3	4 4 3 3

LIST OF PUBLICATIONS

12	Quantum Information: What Is It All About?. <i>Entropy</i> , 2017 , 19, 645	2.8	2	
11	Reply to Comment on Nonlocality claims are inconsistent with Hilbert-space quantum mechanics Deliant Deliant Review A, 2021 , 104,	2.6	2	
10	Measured responses to quantum Bayesianism. <i>Physics Today</i> , 2012 , 65, 8-9	0.9	1	
9	Consistent Histories and Quantum Delayed Choice. Fortschritte Der Physik, 1998 , 46, 741-748	5.7	1	
8	Comment on "Approaches to the Tricritical Point in Quasibinary Fluid Mixtures". <i>Physical Review Letters</i> , 1984 , 53, 741-741	7.4	1	
7	Making Consistent Inferences from Quantum Measurementsa. <i>Annals of the New York Academy of Sciences</i> , 1986 , 480, 512-517	6.5	1	
6	Critical phenomena at phase transitions in fluids and model ferromagnets. Ferroelectrics, 1974 , 7, 71-7	8 0.6	1	
5	Correlation-Function Inequality Obtained by Yeh. <i>Physical Review B</i> , 1970 , 1, 3883-3883	3.3	1	
4	Readers offer their own magic moments with John Bell. <i>Physics Today</i> , 2015 , 68, 10-10	0.9		
3	Reply to Comment on Consistent histories and quantum reasoning Physical Review A, 1998, 58, 3356-	335₺		
2	Griffiths replies. <i>Physical Review Letters</i> , 1994 , 72, 1771	7.4		
1	COMMENSURATE-INCOMMENSURATE TRANSITIONS AND AREA-PRESERVING MAPS : THE FRENKEL-KONTOROVA MODEL 1991 , 243-265			