Yingxi Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5289431/publications.pdf

Version: 2024-02-01

		567281	552781
26	706	15	26
papers	706 citations	h-index	g-index
27	27	27	1079
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Supramolecular Nanodiscs Selfâ€Assembled from Nonâ€Ionic Heptamethine Cyanine for Imagingâ€Guided Cancer Photothermal Therapy. Advanced Materials, 2020, 32, e1906711.	21.0	82
2	Site-Selective Lateral Multilayer Assembly of Bienzyme with Polyelectrolyte on ITO Electrode Based on Electric Field-Induced Directly Layer-by-Layer Deposition. Biomacromolecules, 2003, 4, 1161-1167.	5.4	62
3	High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices. Journal of Materials Chemistry C, 2013, 1, 7380.	5.5	60
4	Low-voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics. Applied Physics Letters, 2009, 94, 113303.	3.3	55
5	Intriguing H-Aggregates of Heptamethine Cyanine for Imaging-Guided Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32388-32396.	8.0	52
6	Room-Temperature Imprinting Poly(acrylic acid)/Poly(allylamine hydrochloride) Multilayer Films by Using Polymer Molds. Langmuir, 2007, 23, 3254-3259.	3.5	47
7	Engineering a "PEG-g-PEI/DNA nanoparticle-in- PLGA microsphere―hybrid controlled release system to enhance immunogenicity of DNA vaccine. Materials Science and Engineering C, 2020, 106, 110294.	7.3	46
8	A cyanine-derived near-infrared molecular rotor for ratiometric imaging of mitochondrial viscosity in cells. Sensors and Actuators B: Chemical, 2019, 298, 126831.	7.8	38
9	Cell Adhesion Properties of Patterned Poly(acrylic acid)/Poly(allylamine hydrochloride) Multilayer Films Created by Room-Temperature Imprinting Technique. Langmuir, 2008, 24, 8050-8055.	3.5	33
10	pH-Induced Antireflection Coatings Derived From Hydrogen-Bonding-Directed Multilayer Films. Langmuir, 2010, 26, 17749-17755.	3.5	25
11	Tailor-Engineered POSS-Based Hybrid Gels for Bone Regeneration. Biomacromolecules, 2019, 20, 3485-3493.	5.4	21
12	Selective Dissolution of the Silver Component in Colloidal Au and Ag Multilayers:Â A Facile Way to Prepare Nanoporous Gold Film Materials. Langmuir, 2005, 21, 5179-5184.	3.5	20
13	Patterning Layered Polymeric Multilayer Films by Room-Temperature Nanoimprint Lithography. Macromolecular Rapid Communications, 2006, 27, 505-510.	3.9	20
14	Coreâ€shell structured ironâ€containing ceramic nanoparticles: Facile fabrication and excellent electromagnetic absorption properties. Journal of the American Ceramic Society, 2019, 102, 7098-7107.	3.8	18
15	Esterase-Responsive Polypeptide Vesicles as Fast-Response and Sustained-Release Nanocompartments for Fibroblast-Exempt Drug Delivery. Biomacromolecules, 2020, 21, 5093-5103.	5.4	17
16	Using Platelet-Rich Plasma Hydrogel to Deliver Mesenchymal Stem Cells into Three-Dimensional PLGA Scaffold for Cartilage Tissue Engineering. ACS Applied Bio Materials, 2021, 4, 8607-8614.	4.6	17
17	Boost photothermal theranostics via selfâ€assemblyâ€induced crystallization (SAIC). Aggregate, 2022, 3, .	9.9	15
18	Self-assembled polymer layers of linear polyethylenimine for enhancing electrochromic cycling stability. Journal of Materials Chemistry C, 2013, 1, 3651.	5.5	14

#	Article	IF	CITATION
19	Robust Electrospun Nanofibers from Chemosynthetic Poly(4â€hydroxybutyrate) as Artificial Dural Substitute. Macromolecular Bioscience, 2021, 21, e2100134.	4.1	14
20	A Simple Small Molecule with Synergistic Passive and Active Dual-Targeting Effects for Imaging-Guided Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36958-36966.	8.0	13
21	Reducing thermal damage to adjacent normal tissue with dual thermo-responsive polymer via thermo-induced phase transition for precise photothermal theranosis. Acta Biomaterialia, 2022, 148, 142-151.	8.3	11
22	Synthesis and characterization of nanorod-structured vanadium oxides. Thin Solid Films, 2018, 660, 180-185.	1.8	8
23	A cyanine-derived NIR molecular rotor for ratiometric imaging of amyloid- \hat{l}^2 aggregates. Sensors and Actuators B: Chemical, 2021, 338, 129842.	7.8	7
24	Designation of a Nanoâ€Fe ₃ O ₄ Based Composite Electrode with Long Cycle Life for Lithiumâ€lon Batteries. ChemElectroChem, 2019, 6, 3606-3614.	3.4	5
25	Lighting up Self-Quenching Nanoaggregates with Protein Corona for Simultaneous Intraoperative Imaging and Photothermal Theranostics of Metastatic Cancer. Analytical Chemistry, 2022, 94, 9775-9784.	6.5	4
26	Mussel-inspired layer-by-layer assembled polymeric films with fast growing and NIR light triggered healing capabilities. European Polymer Journal, 2021, 158, 110689.	5.4	2