Amir Sharon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5289371/publications.pdf

Version: 2024-02-01

51	4,001	27 h-index	48
papers	citations		g-index
57	57	57	5381
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Regulation of plant immunity and growth by tomato receptorâ€like cytoplasmic kinase TRK1. New Phytologist, 2022, 233, 458-478.	7.3	11
2	Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 2022, 40, 422-431.	17. 5	102
3	Genome sequences of three <i>Aegilops</i> species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant Journal, 2022, 110, 179-192.	5.7	46
4	Jasmonic acid pathway is required in the resistance induced by Acremonium sclerotigenum in tomato against Pseudomonas syringae. Plant Science, 2022, 318, 111210.	3.6	7
5	<i>Botrytis cinerea</i> àꀉ <scp>BcSSP2</scp> protein is a late infection phase, cytotoxic effector. Environmental Microbiology, 2022, 24, 3420-3435.	3.8	7
6	Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nature Communications, 2022, 13, 1607.	12.8	48
7	Botrytis cinerea methyl isocitrate lyase mediates oxidative stress tolerance and programmed cell death by modulating cellular succinate levels. Fungal Genetics and Biology, 2021, 146, 103484.	2.1	7
8	The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nature Communications, 2021, 12, 2166.	12.8	47
9	Effect of Ionizing Radiation on the Bacterial and Fungal Endophytes of the Halophytic Plant Kalidium schrenkianum. Microorganisms, 2021, 9, 1050.	3.6	7
10	High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Communications Biology, 2021, 4, 1242.	4.4	14
11	Stem Endophytic Mycobiota in Wild and Domesticated Wheat: Structural Differences and Hidden Resources for Wheat Improvement. Journal of Fungi (Basel, Switzerland), 2020, 6, 180.	3.5	19
12	Significant host†and environmentâ€dependent differentiation among highly sporadic fungal endophyte communities in cereal crops†related wild grasses. Environmental Microbiology, 2020, 22, 3357-3374.	3.8	32
13	Reducing the size of an alien segment carrying leaf rust and stripe rust resistance in wheat. BMC Plant Biology, 2020, 20, 153.	3.6	10
14	Endophytes from wild cereals protect wheat plants from drought by alteration of physiological responses of the plants to water stress. Environmental Microbiology, 2019, 21, 3299-3312.	3.8	38
15	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
16	Response to Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death― Science, 2018, 360, .	12.6	1
17	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	3.6	30
18	Genetic alteration of UDPâ€rhamnose metabolism in <i>Botrytis cinerea</i> leads to the accumulation of UDPâ€kDG that adversely affects development and pathogenicity. Molecular Plant Pathology, 2017, 18, 263-275.	4.2	24

#	Article	IF	Citations
19	Characterization of <i>Botrytis</i> –plant interactions using PathTrack [©] —an automated system for dynamic analysis of disease development. Molecular Plant Pathology, 2017, 18, 503-512.	4.2	13
20	The <i>Botrytis cinerea</i> PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac. Molecular Microbiology, 2017, 104, 487-498.	2.5	9
21	Plant Pathogenic Fungi. Microbiology Spectrum, 2017, 5, .	3.0	187
22	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	12.6	781
23	Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science, 2017, 357, 1037-1041.	12.6	92
24	UDP-4-Keto-6-Deoxyglucose, a Transient Antifungal Metabolite, Weakens the Fungal Cell Wall Partly by Inhibition of UDP-Galactopyranose Mutase. MBio, 2017, 8, .	4.1	6
25	BcXYG1, a Secreted Xyloglucanase from <i>Botrytis cinerea</i> , Triggers Both Cell Death and Plant Immune Responses. Plant Physiology, 2017, 175, 438-456.	4.8	102
26	Plant Pathogenic Fungi., 2017,, 701-726.		22
27	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	2.5	124
28	Nucleoporin-regulated MAP kinase signaling in immunity to a necrotrophic fungal pathogen. Plant Physiology, 2016, 172, pp.00832.2016.	4.8	31
29	Diversity of fungal endophytes in recent and ancient wheat ancestors <i>Triticum dicoccoides</i> and <i>Aegilops sharonensis</i> . FEMS Microbiology Ecology, 2016, 92, fiw152.	2.7	56
30	Translocation from nuclei to cytoplasm is necessary for anti Aâ€PCD activity and turnover of the Type II IAP BcBir1. Molecular Microbiology, 2016, 99, 393-406.	2.5	4
31	Infection Process and Fungal Virulence Factors. , 2016, , 229-246.		18
32	Measurement of apoptosis by SCANÂ \otimes , a system for counting and analysis of fluorescently labelled nuclei. Microbial Cell, 2014, 1, 406-415.	3.2	7
33	Fungi Infecting Plants and Animals: Killers, Non-Killers, and Cell Death. PLoS Pathogens, 2013, 9, e1003517.	4.7	32
34	Involvement of Botrytis cinerea Small GTPases BcRAS1 and BcRAC in Differentiation, Virulence, and the Cell Cycle. Eukaryotic Cell, 2013, 12, 1609-1618.	3.4	73
35	Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Frontiers in Oncology, 2012, 2, 97.	2.8	40
36	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902

#	Article	IF	CITATIONS
37	Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation. Fungal Genetics and Biology, 2011, 48, 621-630.	2.1	22
38	The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Fungal Genetics and Biology, 2011, 48, 1012-1019.	2.1	48
39	Regulation of Pathogenic Spore Germination by CgRac1 in the Fungal Plant Pathogen Colletotrichum gloeosporioides. Eukaryotic Cell, 2011, 10, 1122-1130.	3.4	41
40	Apoptosis-like programmed cell death in the grey mould fungus <i>Botrytis cinerea</i> : genes and their role in pathogenicity. Biochemical Society Transactions, 2011, 39, 1493-1498.	3.4	27
41	Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection. PLoS Pathogens, 2011, 7, e1002185.	4.7	147
42	CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiology, 2009, 9, 173.	3.3	24
43	Fungal apoptosis: function, genes and gene function. FEMS Microbiology Reviews, 2009, 33, 833-854.	8.6	167
44	Programmed Cell Death in Fungus–Plant Interactions. , 2009, , 221-236.		4
45	Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biology, 2008, 6, 9.	3.8	42
46	Functional Characterization of CgCTR2, a Putative Vacuole Copper Transporter That Is Involved in Germination and Pathogenicity in <i>Colletotrichum gloeosporioides </i> . Eukaryotic Cell, 2008, 7, 1098-1108.	3.4	30
47	Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genetics and Biology, 2007, 44, 32-43.	2.1	40
48	Ethylene Sensing and Gene Activation in Botrytis cinerea: A Missing Link in Ethylene Regulation of Fungus-Plant Interactions?. Molecular Plant-Microbe Interactions, 2006, 19, 33-42.	2.6	97
49	Host Physiology and Pathogenic Variation of Cochliobolus heterostrophus Strains with Mutations in the G Protein Alpha Subunit, CGA1. Applied and Environmental Microbiology, 2004, 70, 5005-5009.	3.1	26
50	cAMP regulation of "pathogenic―and "saprophytic―fungal spore germination. Fungal Genetics and Biology, 2004, 41, 317-326.	2.1	85
51	Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia. Current Genetics, 1999, 36, 98-104.	1.7	68