
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5289205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nature Communications, 2020, 11, 3908.	12.8	172
2	Low-temperature selective catalytic reduction of NO with NH3 over monolith catalyst of MnOx/CeO2–ZrO2–Al2O3. Catalysis Today, 2011, 175, 171-176.	4.4	118
3	Tungsten modified MnOx–CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia. Chemical Engineering Science, 2012, 76, 120-128.	3.8	116
4	Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2014, 240, 62-73.	12.7	115
5	Different Reaction Mechanisms of Ammonia Oxidation Reaction on Pt/Al ₂ O ₃ and Pt/CeZrO ₂ with Various Pt States. ACS Applied Materials & Interfaces, 2019, 11, 23102-23111.	8.0	68
6	Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia. Journal of Molecular Catalysis A, 2015, 398, 304-311.	4.8	67
7	Preparation of ceria–zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. Journal of Colloid and Interface Science, 2015, 450, 404-416.	9.4	65
8	Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides. Chemistry of Materials, 2019, 31, 5529-5536.	6.7	65
9	Promotion of catalytic performance by adding W into Pt/ZrO2 catalyst for selective catalytic oxidation of ammonia. Applied Surface Science, 2017, 402, 323-329.	6.1	56
10	Design and Synthesis of Highly-Dispersed WO ₃ Catalyst with Highly Effective NH ₃ –SCR Activity for NO _{<i>x</i>} Abatement. ACS Catalysis, 2019, 9, 11557-11562.	11.2	50
11	Effects of contact model and NO x on soot oxidation activity over Pt/MnO x -CeO 2 and the reaction mechanisms. Chemical Engineering Journal, 2017, 327, 1066-1076.	12.7	49
12	The promotional effect of Ce on CuFe/beta monolith catalyst for selective catalytic reduction of NO x by ammonia. Chemical Engineering Journal, 2016, 302, 697-706.	12.7	48
13	Effect of yttria in Pt/TiO ₂ on sulfur resistance diesel oxidation catalysts: enhancement of low-temperature activity and stability. Catalysis Science and Technology, 2014, 4, 3032-3043.	4.1	46
14	Size-dependent CO and propylene oxidation activities of platinum nanoparticles on the monolithic Pt/TiO ₂ –YO _x diesel oxidation catalyst under simulative diesel exhaust conditions. Catalysis Science and Technology, 2015, 5, 2358-2365.	4.1	45
15	Effectively promote catalytic performance by adjusting W/Fe molar ratio of FeWx/Ce0.68Zr0.32O2 monolithic catalyst for NH3-SCR. Journal of Industrial and Engineering Chemistry, 2016, 36, 334-345.	5.8	45
16	Promotion of catalytic performance by adding Cu into Pt/ZSM-5 catalyst for selective catalytic oxidation of ammonia. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 401-408.	5.3	44
17	Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH ₃ -SCR monolith catalysis Science and Technology, 2015, 5, 4511-4521.	4.1	43
18	Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal–Support Interactions: A New Twist on an Old Story. ACS Central Science, 2020, 6, 1617-1627.	11.3	42

#	Article	IF	CITATIONS
19	Solvent-free rapid synthesis of porous CeWO _x by a mechanochemical self-assembly strategy for the abatement of NO _x . Journal of Materials Chemistry A, 2020, 8, 6717-6731.	10.3	42
20	Promotion of CeO2–ZrO2–Al2O3 composite by selective doping with barium and its supported Pd-only three-way catalyst. Journal of Molecular Catalysis A, 2015, 410, 100-109.	4.8	40
21	Monolith Ce0.65Zr0.35O2-based catalysts for selective catalytic reduction of NO with NH3. Chemical Engineering Research and Design, 2015, 94, 648-659.	5.6	37
22	Novel promoting effects of tungsten on the selective catalytic reduction of NO by NH3 over MnO –CeO2 monolith catalyst. Catalysis Communications, 2011, 16, 20-24.	3.3	34
23	Promotional effects of Titanium additive on the surface properties, active sites and catalytic activity of W/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3. Applied Surface Science, 2017, 419, 697-707.	6.1	32
24	Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment. Applied Surface Science, 2018, 427, 656-669.	6.1	31
25	The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites. Journal of Alloys and Compounds, 2015, 628, 213-221.	5.5	30
26	The promotion effect of tungsten on monolith Pt/Ce _{0.65} Zr _{0.35} O ₂ catalysts for the catalytic oxidation of toluene. New Journal of Chemistry, 2019, 43, 5719-5726.	2.8	30
27	Influence of Mn/(Mn+Ce) Ratio of MnOx-CeO2/WO3-ZrO2 Monolith Catalyst on Selective Catalytic Reduction of NOx with Ammonia. Chinese Journal of Catalysis, 2012, 33, 1927-1937.	14.0	27
28	Effects of Nd on the properties of CeO2–ZrO2 and catalytic activities of three-way catalysts with low Pt and Rh. Journal of Alloys and Compounds, 2015, 621, 104-115.	5.5	27
29	Neodymium promotion on the low-temperature hydrothermal stability of a Cu/SAPO-34 NH 3 -SCR monolith catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 805-812.	5.3	27
30	Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce. Catalysis Today, 2019, 327, 64-72.	4.4	27
31	Effect of the calcination temperature of cerium–zirconium mixed oxides on the structure and catalytic performance of WO ₃ /CeZrO ₂ monolithic catalyst for selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 24177-24187.	3.6	26
32	Effect of Si islands on low-temperature hydrothermal stability of Cu/SAPO-34 catalyst for NH 3 -SCR. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 288-294.	5.3	23
33	Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts. Applied Surface Science, 2018, 443, 336-344.	6.1	23
34	Promotional effects of ethylenediamine on the low-temperature catalytic activity of selective catalytic oxidation of ammonia over Pt/SiAlOx: States and particle sizes of Pt. Applied Surface Science, 2019, 481, 1344-1351.	6.1	23
35	Novel Cu-Based CHA/AFI Hybrid Crystal Structure Catalysts Synthesized for NH ₃ -SCR. Industrial & Engineering Chemistry Research, 2019, 58, 18046-18054.	3.7	22
36	Novel promoting effects of cerium on the activities of NOx reduction by NH3 over TiO2-SiO2-WO3 monolith catalysts. Journal of Rare Earths, 2014, 32, 952-959.	4.8	20

#	Article	IF	CITATIONS
37	Hydrothermal deactivation over CuFe/BEA for NH3-SCR. Journal of Industrial and Engineering Chemistry, 2018, 65, 40-50.	5.8	20
38	Grain size effect on the high-temperature hydrothermal stability of Cu/SAPO-34 catalysts for NH3-SCR. Journal of Environmental Chemical Engineering, 2020, 8, 104559.	6.7	20
39	Solvent Effects on the Low-Temperature NH ₃ –SCR Activity and Hydrothermal Stability of WO ₃ /SiO ₂ @CeZrO _{<i>x</i>} Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 13418-13429.	6.7	20
40	Novel promotional effect of yttrium on Cu–SAPO-34 monolith catalyst for selective catalytic reduction of NOx by NH3 (NH3-SCR). Catalysis Communications, 2016, 76, 33-36.	3.3	19
41	Enhancement of the Hydrothermal Stability of WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ Catalyst by Silica Modification for NH ₃ -SCR. ACS Applied Energy Materials, 2020, 3, 1161-1170.	5.1	19
42	Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and high-reaction regions: establishing roles of different reaction sites. Rare Metals, 2022, 41, 1899-1910.	7.1	18
43	New Insights into Excellent Catalytic Performance of the Ce-Modified Catalyst for NO Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 7876-7885.	3.7	16
44	Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH ₃ -SCR. Dalton Transactions, 2018, 47, 15038-15048.	3.3	15
45	Synthesis of high stability nanosized Rh/CeO2–ZrO2 three-way automotive catalysts by Rh chemical state regulation. Journal of the Energy Institute, 2020, 93, 2325-2333.	5.3	15
46	Development of a thermally stable Pt catalyst by redispersion between CeO ₂ and Al ₂ O ₃ . RSC Advances, 2021, 11, 7015-7024.	3.6	15
47	Promotional effects of ascorbic acid on the low-temperature catalytic activity of selective catalytic oxidation of ammonia over Pt/SA: effect of Pt ⁰ content. New Journal of Chemistry, 2020, 44, 4108-4113.	2.8	14
48	Promotional effects of Zr on K + -poisoning resistance of CeTiO x catalyst for selective catalytic reductionof NO x with NH 3. Chinese Journal of Catalysis, 2016, 37, 1354-1361.	14.0	13
49	Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH ₃ -SCR. Catalysis Science and Technology, 2021, 11, 7640-7651.	4.1	13
50	Investigation of the selective catalytic reduction of NO with NH ₃ over the WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ catalyst: the role of H ₂ O in SO ₂ inhibition. New Journal of Chemistry, 2019, 43, 2258-2268.	2.8	12
51	The influence of molar ratios of Ce/Zr on the selective catalytic reduction of NO x with NH3 over Fe2O3-WO3/Ce x Zr1â^'x O2 (0Ââ‰ÂxÂâ‰Â1) monolith catalyst. Science Bulletin, 2014, 59, 3956-3965.	1.7	11
52	Effects of ZnO content on the performance of Pd/Zr0.5Al0.5O1.75 catalysts used in lean-burn natural gas vehicles. Chinese Journal of Catalysis, 2014, 35, 1157-1165.	14.0	11
53	Influence of La on CeO ₂ -ZrO ₂ Catalyst for Oxidation of Soluble Organic Fraction from Diesel Exhaust. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 2358-2365.	4.9	11
54	Significant differences of NH ₃ -SCR performances between monoclinic and hexagonal WO ₃ on Ce-based catalysts. Environmental Science: Nano, 2021, 8, 2988-3000.	4.3	11

#	Article	IF	CITATIONS
55	Promotional effect of niobium substitution on the low-temperature activity of a WO ₃ /CeZrO _x monolithic catalyst for the selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 47570-47582.	3.6	10
56	The effective promotion of trace amount of Cu on Ce/WO ₃ â€ZrO ₂ â€TiO ₂ monolithic catalyst for the lowâ€temperature NH ₃ â€SCR of NO <i>_x</i> . Canadian Journal of Chemical Engineering, 2018, 96, 1168-1175.	1.7	10
57	Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion. Chemical Papers, 2016, 70, .	2.2	8
58	Improved low-temperature catalytic oxidation performance of Pt-based catalysts by modulating the electronic and size effects. New Journal of Chemistry, 2020, 44, 10500-10506.	2.8	7
59	Superior catalytic activity and high thermal durability of MgAl2O4 modified Pt/Ce0.5Zr0.5O2 TWC. Applied Surface Science, 2022, 578, 151915.	6.1	7
60	Low-temperature performance controlled by hydroxyl value in polyethylene glycol enveloping Pt-based catalyst for CO/C3H6/NO oxidation. Molecular Catalysis, 2020, 484, 110740.	2.0	6
61	Optimization of Hybrid Crystal with SAPO-5/34 on Hydrothermal Stability for deNOx Reaction by NH3. Chemical Research in Chinese Universities, 2020, 36, 1249-1254.	2.6	6
62	The promotion effects of TiO 2 on the selective catalytic reduction of NO x with NH 3 over ceo 2 â€WO 3 /ZrO 2 : The catalytic performance and reaction route. Canadian Journal of Chemical Engineering, 2019, 97, 1274-1282.	1.7	4
63	Fabricate surface structure-stabilized Cu/BEA with hydrothermal-resistant via si-deposition for NOx abatement. Molecular Catalysis, 2020, 495, 111153.	2.0	4
64	Selective Catalytic Reduction of NO with NH3 on Modified ZrO2-MnO2 Mono-lithic Catalysts. Chinese Journal of Catalysis, 2014, 32, 1227-1233.	14.0	2
65	Effects of Zr Addition on the Performance of the Pd-Pt/Al ₂ 0 ₃ Catalyst for Lean-Burn Natural Gas Vehicle Exhaust Purification. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1771-1779.	4.9	2
66	Activity of Monolith Cu-ZSM-5 Catalyst for Selective Catalytic Reduction of NO with NH ₃ . Chinese Journal of Catalysis, 2011, 31, 1411-1416.	14.0	1
67	Influence of Calcination Temperature on Performance of Monolith Catalyst MnO ₂ -CeO ₂ /Zr _{0.25} Ti _{0.2 for Selective Catalytic Reduction of NO by NH₃ at Low Temperature. Chinese Journal of Catalysis, 2010, 31, 229-235.}	5& t:/SUB8 14.0	>Al <su< td=""></su<>