Claire L Price

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5289171/publications.pdf Version: 2024-02-01

CLAIDE | DDICE

#	Article	IF	CITATIONS
1	Azole fungicidesÂ-Âunderstanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science, 2015, 71, 1054-1058.	3.4	214
2	Resistance to antifungals that target CYP51. Journal of Chemical Biology, 2014, 7, 143-161.	2.2	146
3	The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme. Antimicrobial Agents and Chemotherapy, 2016, 60, 4530-4538.	3.2	57
4	On the occurrence of cytochrome P450 in viruses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12343-12352.	7.1	45
5	In VitroBiochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 7771-7778.	3.2	32
6	The Evolution of Azole Resistance in <i>Candida albicans</i> Sterol 14î±-Demethylase (CYP51) through Incremental Amino Acid Substitutions. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	32
7	The Tetrazole VT-1161 Is a Potent Inhibitor of Trichophyton rubrum through Its Inhibition of T. rubrum CYP51. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20
8	Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa. Scientific Reports, 2016, 6, 27690.	3.3	14
9	Co-production of 11α-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases. Biotechnology for Biofuels, 2017, 10, 226.	6.2	14
10	Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1164-1178.	2.4	14
11	Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase. Applied and Environmental Microbiology, 2015, 81, 3379-3386.	3.1	13
12	Isavuconazole and voriconazole inhibition of sterol 14α-demethylases (CYP51) from Aspergillus fumigatus and Homo sapiens. International Journal of Antimicrobial Agents, 2019, 54, 449-455.	2.5	9
13	Cytochrome P450 168A1 from Pseudomonas aeruginosa is involved in the hydroxylation of biologically relevant fatty acids. PLoS ONE, 2022, 17, e0265227.	2.5	2
14	The emergence of life: from chemical origins to synthetic biology by Pier Luigi Luisi. Biochemist, 2020, 42, 67-67.	0.5	0