Débora de Souza Collares Maia Castel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5289035/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research advances on the multiple uses of Moringa oleifera : A sustainable alternative for socially neglected population. Asian Pacific Journal of Tropical Medicine, 2017, 10, 621-630.	0.8	115
2	Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against <i>Candida</i> species are reduced by farnesol. Medical Mycology, 2013, 51, 53-59.	0.7	85
3	Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms. Biofouling, 2019, 35, 320-328.	2.2	73
4	Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydrate Polymers, 2018, 195, 662-669.	10.2	54
5	Antifungal Activity, Toxicity and Chemical Composition of the Essential Oil of Coriandrum sativum L. Fruits. Molecules, 2012, 17, 8439-8448.	3.8	52
6	Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Medical Mycology, 2015, 53, 145-152.	0.7	51
7	Characterization of the gastrointestinal yeast microbiota of cockatiels (Nymphicus hollandicus): a potential hazard to human health. Journal of Medical Microbiology, 2010, 59, 718-723.	1.8	50
8	Histoplasmosis in HIV-positive patients in CearÃi, Brazil: clinical-laboratory aspects and in vitro antifungal susceptibility of Histoplasma capsulatum isolates. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 484-488.	1.8	48
9	Molecular methods for the diagnosis and characterization ofCryptococcus: a review. Canadian Journal of Microbiology, 2010, 56, 445-458.	1.7	46
10	Candida species isolated from the gastrointestinal tract of cockatiels (Nymphicus hollandicus): In vitro antifungal susceptibility profile and phospholipase activity. Veterinary Microbiology, 2010, 145, 324-328.	1.9	44
11	Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Research, 2015, 15, fov012.	2.3	41
12	Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Brazilian Journal of Microbiology, 2016, 47, 917-924.	2.0	40
13	Detection of Candida species resistant to azoles in the microbiota of rheas (Rhea americana): possible implications for human and animal health. Journal of Medical Microbiology, 2013, 62, 889-895.	1.8	36
14	Yeasts from Macrobrachium amazonicum: a focus on antifungal susceptibility and virulence factors of Candida spp FEMS Microbiology Ecology, 2011, 76, 268-277.	2.7	35
15	Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. Journal of Medical Microbiology, 2017, 66, 1045-1052.	1.8	34
16	In vitro inhibitory effect of miltefosine against strains of Histoplasma capsulatum var. capsulatum and Sporothrix spp Medical Mycology, 2014, 52, 320-325.	0.7	33
17	Yeast microbiota of raptors: a possible tool for environmental monitoring. Environmental Microbiology Reports, 2012, 4, 189-193.	2.4	32
18	Farnesol increases the susceptibility of <i>Burkholderia pseudomallei</i> biofilm to antimicrobials used to treat melioidosis. Journal of Applied Microbiology, 2016, 120, 600-606.	3.1	32

#	Article	IF	CITATIONS
19	Antifungal susceptibility of Sporothrix schenckii complex biofilms. Medical Mycology, 2018, 56, 297-306.	0.7	32
20	Azole-resistant <i>Candida albicans</i> from a wild Brazilian porcupine (<i>Coendou prehensilis</i>): a sign of an environmental imbalance?. Medical Mycology, 2013, 51, 555-560.	0.7	31
21	Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. Journal of Medical Microbiology, 2015, 64, 394-399.	1.8	30
22	Malassezia pachydermatis from animals: Planktonic and biofilm antifungal susceptibility and its virulence arsenal. Veterinary Microbiology, 2018, 220, 47-52.	1.9	29
23	Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Veterinary Microbiology, 2012, 159, 375-380.	1.9	28
24	Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species. Brazilian Journal of Infectious Diseases, 2015, 19, 459-465.	0.6	28
25	Crossâ€resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?. Mycoses, 2016, 59, 281-290.	4.0	28
26	Azole resistance in <i>Candida albicans</i> from animals: Highlights on efflux pump activity and gene overexpression. Mycoses, 2017, 60, 462-468.	4.0	28
27	Clinical-Epidemiological Features of 13 Cases of Melioidosis in Brazil. Journal of Clinical Microbiology, 2012, 50, 3349-3352.	3.9	27
28	Effect of Farnesol on Growth, Ergosterol Biosynthesis, and Cell Permeability in Coccidioides posadasii. Antimicrobial Agents and Chemotherapy, 2013, 57, 2167-2170.	3.2	25
29	Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Veterinary Microbiology, 2016, 192, 213-219.	1.9	25
30	Sesquiterpene Farnesol Contributes to Increased Susceptibility to β-Lactams in Strains of Burkholderia pseudomallei. Antimicrobial Agents and Chemotherapy, 2012, 56, 2198-2200.	3.2	24
31	Species of <i>Candida</i> as a component of the nasal microbiota of healthy horses. Medical Mycology, 2013, 51, 731-736.	0.7	22
32	<i>In vitro</i> antifungal activity of miltefosine and levamisole: their impact on ergosterol biosynthesis and cell permeability of dimorphic fungi. Journal of Applied Microbiology, 2015, 119, 962-969.	3.1	22
33	Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism. Brazilian Journal of Microbiology, 2016, 47, 33-38.	2.0	20
34	Promethazine improves antibiotic efficacy and disrupts biofilms of <i>Burkholderia pseudomallei</i> . Biofouling, 2017, 33, 88-97.	2.2	19
35	Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms. Medical Mycology, 2019, 57, 764-772.	0.7	19
36	Antifungal susceptibility and virulence of Candida parapsilosis species complex: an overview of their pathogenic potential. Journal of Medical Microbiology, 2018, 67, 903-914.	1.8	19

#	Article	IF	CITATIONS
37	Coccidioidomycosis in armadillo hunters from the state of CearÃį, Brazil. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 813-815.	1.6	18
38	Evidence of Fluconazole-Resistant Candida Species in Tortoises and Sea Turtles. Mycopathologia, 2015, 180, 421-426.	3.1	18
39	Vibrio spp. from Macrobrachium amazonicum prawn farming are inhibited by Moringa oleifera extracts. Asian Pacific Journal of Tropical Medicine, 2015, 8, 919-922.	0.8	18
40	The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in <i>Trichosporon</i> spp Biofouling, 2017, 33, 640-650.	2.2	18
41	In vitro activity of azole derivatives and griseofulvin against planktonic and biofilm growth of clinical isolates of dermatophytes. Mycoses, 2018, 61, 449-454.	4.0	18
42	Exposure of Candida parapsilosis complex to agricultural azoles: An overview of the role of environmental determinants for the development of resistance. Science of the Total Environment, 2019, 650, 1231-1238.	8.0	18
43	<i>In vitro</i> and <i>ex vivo</i> biofilms of dermatophytes: a new panorama for the study of antifungal drugs. Biofouling, 2020, 36, 783-791.	2.2	18
44	Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses, 2022, 65, 303-311.	4.0	18
45	Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Medical Mycology, 2019, 57, 1038-1045.	0.7	17
46	<i>Ex vivo</i> biofilm-forming ability of dermatophytes using dog and cat hair: an ethically viable approach for an infection model. Biofouling, 2019, 35, 392-400.	2.2	17
47	Ciprofloxacin shows synergism with classical antifungals against <i>Histoplasma capsulatum var. capsulatum</i> and <i>Coccidioides posadasii</i> . Mycoses, 2013, 56, 397-401.	4.0	16
48	Antifungal susceptibility and virulence attributes of animal-derived isolates of Candida parapsilosis complex. Journal of Medical Microbiology, 2014, 63, 1568-1572.	1.8	16
49	In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex. Medical Mycology, 2015, 53, 93-98.	0.7	16
50	Inhibitory effect of a lipopeptide biosurfactant produced by <i>Bacillus subtilis</i> on planktonic and sessile cells of <i>Trichosporon</i> spp Biofouling, 2018, 34, 309-319.	2.2	16
51	Pentamidine inhibits the growth of <i>Sporothrix schenckii</i> complex and exhibits synergism with antifungal agents. Future Microbiology, 2018, 13, 1129-1140.	2.0	16
52	Antifungal Resistance and Virulence Among Candida spp. from Captive Amazonian manatees and West Indian Manatees: Potential Impacts on Animal and Environmental Health. EcoHealth, 2016, 13, 328-338.	2.0	15
53	Trends in antifungal susceptibility and virulence of <i>Candida</i> spp. from the nasolacrimal duct of horses. Medical Mycology, 2016, 54, 147-154.	0.7	15
54	An alternative method for the analysis of melanin production in <i>Cryptococcus neoformans sensu lato</i> and <i>Cryptococcus gattii sensu lato</i> . Mycoses, 2017, 60, 697-702.	4.0	15

JAU	BOKA	DE SU	JUZA	COL	LARE
1.1.1	CACT		DANC	0	

#	Article	IF	CITATIONS
55	Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp Microbial Pathogenesis, 2019, 130, 219-225.	2.9	15
56	The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of <i>Candida tropicalis</i> . Canadian Journal of Microbiology, 2020, 66, 377-388.	1.7	15
57	Candida parapsilosis complex in veterinary practice: A historical overview, biology, virulence attributes and antifungal susceptibility traits. Veterinary Microbiology, 2017, 212, 22-30.	1.9	14
58	Yeasts from the microbiota of bats: a focus on the identification and antimicrobial susceptibility of cryptic species of Candida. Journal of Medical Microbiology, 2016, 65, 1225-1228.	1.8	14
59	Biofilms of <i>Candida</i> spp. from the ocular conjunctiva of horses with reduced azole susceptibility: a complicating factor for the treatment of keratomycosis?. Veterinary Ophthalmology, 2017, 20, 539-546.	1.0	13
60	Mini-review: from <i>inÂvitro</i> to <i>ex vivo</i> studies: an overview of alternative methods for the study of medical biofilms. Biofouling, 2020, 36, 1-21.	2.2	13
61	Feline Histoplasmosis in Brazil: Clinical and Laboratory Aspects and a Comparative Approach of Published Reports. Mycopathologia, 2012, 173, 193-197.	3.1	12
62	β-lactam antibiotics & vancomycin increase the growth & virulence of <i>Candida</i> spp Future Microbiology, 2018, 13, 869-875.	2.0	12
63	Knowledge of the patients regarding leprosy and adherence to treatment. Brazilian Journal of Infectious Diseases, 2012, 16, 472-475.	0.6	11
64	<i>Trichophyton tonsurans</i> strains from Brazil: phenotypic heterogeneity, genetic homology, and detection of virulence genes. Canadian Journal of Microbiology, 2013, 59, 754-760.	1.7	11
65	<i>In Vitro</i> Activities of Amoxicillin-Clavulanate, Doxycycline, Ceftazidime, Imipenem, and Trimethoprim-Sulfamethoxazole against Biofilm of Brazilian Strains of Burkholderia pseudomallei. Antimicrobial Agents and Chemotherapy, 2013, 57, 5771-5773.	3.2	11
66	Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance. Medical Mycology, 2020, 58, 896-905.	0.7	11
67	Rhamnolipid enhances Burkholderia pseudomallei biofilm susceptibility, disassembly and production of virulence factors. Future Microbiology, 2020, 15, 1109-1121.	2.0	11
68	Serological evidence of Histoplasma capsulatum infection among dogs with leishmaniasis in Brazil. Acta Tropica, 2011, 119, 203-205.	2.0	10
69	Extratos de Moringa oleifera e Vernonia sp. sobre Candida albicans e Microsporum canis isolados de cães e gatos e análise da toxicidade em Artemia sp Ciencia Rural, 2011, 41, 1807-1812.	0.5	10
70	Moringa oleifera inhibits growth of Candida spp. and Hortaea werneckii isolated from Macrobrachium amazonicum prawn farming with a wide margin of safety. Ciencia Rural, 2014, 44, 2197-2203.	0.5	10
71	Antifungal activity of promethazine and chlorpromazine against planktonic cells and biofilms of Cryptococcus neoformans/Cryptococcus gattii complex species. Medical Mycology, 2020, 58, 906-912.	0.7	10
72	In vitro antimicrobial susceptibility of clinical and environmental strains of Burkholderia pseudomallei from Brazil. International Journal of Antimicrobial Agents, 2013, 42, 375-377.	2.5	9

#	Article	IF	CITATIONS
73	Virulence and antimicrobial susceptibility of clinical and environmental strains of <i>Aeromonas</i> spp. from northeastern Brazil. Canadian Journal of Microbiology, 2015, 61, 597-601.	1.7	9
74	β-Lactam antibiotics and vancomycin inhibit the growth of planktonic and biofilm Candida spp.: An additional benefit of antibiotic-lock therapy?. International Journal of Antimicrobial Agents, 2015, 45, 420-423.	2.5	9
75	RYP1 gene as a target for molecular diagnosis of histoplasmosis. Journal of Microbiological Methods, 2016, 130, 112-114.	1.6	9
76	Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Brazilian Journal of Infectious Diseases, 2016, 20, 155-159.	0.6	9
77	Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie Van Leeuwenhoek, 2017, 110, 33-43.	1.7	9
78	Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species. Medical Mycology, 2017, 55, 725-732.	0.7	9
79	Evaluation of the genetic diversity of Histoplasma capsulatum var. capsulatum isolates from north-eastern Brazil. Journal of Medical Microbiology, 2012, 61, 1688-1695.	1.8	8
80	Genetic diversity of <i>Coccidioides posadasii</i> from Brazil. Medical Mycology, 2013, 51, 432-437.	0.7	8
81	Antifungal effect of anthraquinones against <i>Cryptococcus neoformans</i> : detection of synergism with amphotericin B. Medical Mycology, 2021, 59, 564-570.	0.7	8
82	Bipolaris hawaiiensis as an emerging cause of cutaneous phaeohyphomycosis in an Antillean manatee Trichechus manatus manatus. Diseases of Aquatic Organisms, 2015, 113, 69-73.	1.0	8
83	Yeast microbiota of natural cavities of manatees (<i>Trichechus inunguis</i> and <i>Trichechus) Tj ETQq1 Journal of Microbiology, 2015, 61, 763-769.</i>	1 0.784314 rgBT 1.7	/Overlock 7
84	In vitro effects of promethazine on cell morphology and structure and mitochondrial activity of azole-resistant Candida tropicalis. Medical Mycology, 2018, 56, 1012-1022.	0.7	7
85	Phenotype-driven strategies for screening Candida parapsilosis complex for molecular identification. Brazilian Journal of Microbiology, 2018, 49, 193-198.	2.0	7
86	Cryptococcus neoformans/Cryptococcus gattii species complex melanized by epinephrine: Increased yeast survival after amphotericin B exposure. Microbial Pathogenesis, 2020, 143, 104123.	2.9	7
87	<i>Ex situ</i> model of biofilmâ€associated wounds: providing a hostâ€like environment for the study of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> biofilms. Journal of Applied Microbiology, 2021, 131, 1487-1497.	3.1	7
88	Trichosporon asahii and Trichosporon inkin Biofilms Produce Antifungal-Tolerant Persister Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 645812.	3.9	7
89	PCR-REA as an important tool for the identification of Cryptococcus neoformans and Cryptococcus gattii from human and veterinary sources. Veterinary Microbiology, 2011, 154, 180-184.	1.9	6
90	Synergistic Effect of Antituberculosis Drugs and AzolesIn Vitroagainst Histoplasma capsulatum var. capsulatum. Antimicrobial Agents and Chemotherapy, 2011, 55, 4482-4484.	3.2	6

#	Article	IF	CITATIONS
91	Easy Storage Strategies for <i>Sporothrix</i> spp. Strains. Biopreservation and Biobanking, 2015, 13, 131-134.	1.0	6
92	Emergence of azole-resistant Candida albicans in small ruminants. Mycopathologia, 2015, 180, 277-280.	3.1	6
93	Clinical and environmental isolates of Burkholderia pseudomallei from Brazil: Genotyping and detection of virulence gene. Asian Pacific Journal of Tropical Medicine, 2017, 10, 945-951.	0.8	6
94	A proposal for antifungal epidemiological cut-off values against Histoplasma capsulatum var. capsulatum based on the susceptibility of isolates from HIV-infected patients with disseminated histoplasmosis in Northeast Brazil. International Journal of Antimicrobial Agents, 2018, 52, 272-277.	2.5	6
95	Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Anaerobe, 2021, 69, 102322.	2.1	6
96	Proton pump inhibitors versus <i>Cryptococcus</i> species: effects on <i>in vitro</i> susceptibility and melanin production. Future Microbiology, 2019, 14, 489-497.	2.0	5
97	Coccidioidomycosis in Brazil: Historical Challenges of a Neglected Disease. Journal of Fungi (Basel,) Tj ETQq1 1 0	.784314 r 3.5	gBŢ /Overloc
98	One Health Implications of Antimicrobial Resistance in Bacteria from Amazon River Dolphins. EcoHealth, 2021, 18, 383-396.	2.0	5
99	Antifungal susceptibility of emerging opportunistic yeasts and yeast-like fungi from <i>Rhea americana</i> . Canadian Journal of Microbiology, 2013, 59, 577-580.	1.7	4
100	Surveillance of Azole Resistance Among Candida spp. as a Strategy for the Indirect Monitoring of Freshwater Environments. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	4
101	Azole-Resilient Biofilms and Non-wild Type C. albicans Among Candida Species Isolated from Agricultural Soils Cultivated with Azole Fungicides: an Environmental Issue?. Microbial Ecology, 2021, 82, 1080-1083.	2.8	4
102	Darunavir inhibits Cryptococcus neoformans/Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. Journal of Medical Microbiology, 2020, 69, 830-837.	1.8	4
103	Anti-Staphylococcal Activity of Cinnamomum zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections. Antibiotics, 2022, 11, 4.	3.7	4
104	Biochemical Characterization of an In-House Coccidioides Antigen: Perspectives for the Immunodiagnosis of Coccidioidomycosis. Molecules, 2012, 17, 7854-7863.	3.8	3
105	Glucose and lactose as cryoprotectants for fungal strains immobilised in sodium alginate: an emphasis on the conservation of the zygomycetes <i>Rhizopus</i> and <i>Mucor</i> . Mycoses, 2013, 56, 321-326.	4.0	3
106	Macrobrachium amazonicum: an alternative for microbiological monitoring of aquatic environments in Brazil. Ciencia Rural, 2014, 44, 2029-2034.	0.5	3
107	Oral health: comfort and ponderal gain in horses after dental correction. Revista Brasileira De Higiene E Sanidade Animal, 2013, 7, 288-300.	0.0	3
108	In vitro inhibitory effect of statins on planktonic cells and biofilms of the Sporothrix schenckii species complex. Journal of Medical Microbiology, 2020, 69, 838-843.	1.8	3

#	Article	IF	CITATIONS
109	Candida parapsilosis meningitis as the first manifestation of AIDS: case report. Journal of Medical Microbiology, 2011, 60, 1530-1533.	1.8	2
110	Enterobacteria and Vibrio from Macrobrachium amazonicum prawn farming in Fortaleza, CearÃ _i , Brazil. Asian Pacific Journal of Tropical Medicine, 2016, 9, 27-31.	0.8	2
111	Atypical chlamydoconidium-producing Trichophyton tonsurans strains from CearÃ; State, Northeast Brazil: investigation of taxonomy by phylogenetic analysis and biofilm susceptibility. Microbiology (United Kingdom), 2021, 167, .	1.8	2
112	Yeast microbiota of free-ranging amphibians and reptiles from Caatinga biome in CearÃ _i State, Northeast Brazil: High pathogenic potential of Candida famata. Ciencia Rural, 2021, 51, .	0.5	1
113	Vancomycin enhances growth and virulence of Trichosporon spp. planktonic cells and biofilms. Medical Mycology, 2021, 59, 793-801.	0.7	1
114	Anthraquinones from <i>Aloe</i> spp. inhibit <i>Cryptococcus neoformans sensu stricto</i> : effects against growing and mature biofilms. Biofouling, 2021, 37, 809-817.	2.2	1
115	The herbicide paraquat alters growth and melanin production on the Cryptococcus neoformans/Cryptococcus gattii species complex. Canadian Journal of Microbiology, 2022, , .	1.7	1
116	<i>Enterococcus faecalis</i> and <i>Candida albicans</i> dual-species biofilm: establishment of an <i>in vitro</i> protocol and characterization. Biofouling, 0, , 1-13.	2.2	1
117	Coccidioidomycosis and Histoplasmosis in Equines: An Overview to Support the Accurate Diagnosis. Journal of Equine Veterinary Science, 2016, 40, 62-73.	0.9	0