Eike Nagel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5288887/eike-nagel-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20,568 135 357 72 h-index g-index citations papers 6.6 6.65 24,414 435 ext. citations L-index avg, IF ext. papers

#	Paper	IF	Citations
357	Evidence-based cardiovascular magnetic resonance cost-effectiveness calculator for the detection of significant coronary artery disease <i>Journal of Cardiovascular Magnetic Resonance</i> , 2022 , 24, 1	6.9	O
356	Determination of scar area using native and post-contrast T1 mapping: Agreement with late gadolinium enhancement <i>European Journal of Radiology</i> , 2022 , 150, 110242	4.7	O
355	Society for Cardiovascular Magnetic Resonance (SCMR) guidelines for reporting cardiovascular magnetic resonance examinations <i>Journal of Cardiovascular Magnetic Resonance</i> , 2022 , 24, 29	6.9	O
354	Myocardial T1-mapping and extracellular volume in pulmonary arterial hypertension: A systematic review and meta-analysis. <i>Magnetic Resonance Imaging</i> , 2021 , 79, 66-75	3.3	5
353	Cardiac biomarkers in chronic kidney disease are independently associated with myocardial edema and diffuse fibrosis by cardiovascular magnetic resonance. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2021 , 23, 71	6.9	5
352	COVID-19 myocarditis and prospective heart failure burden. <i>Expert Review of Cardiovascular Therapy</i> , 2021 , 19, 5-14	2.5	27
351	Quantitative perfusion-CMR is significantly influenced by the placement of the arterial input function. <i>International Journal of Cardiovascular Imaging</i> , 2021 , 37, 1023-1031	2.5	2
350	Development, validation, and implementation of biomarker testing in cardiovascular medicine state-of-the-art: proceedings of the European Society of Cardiology-Cardiovascular Round Table. <i>Cardiovascular Research</i> , 2021 , 117, 1248-1256	9.9	1
349	Left atrial strain: a multi-modality, multi-vendor comparison study. <i>European Heart Journal Cardiovascular Imaging</i> , 2021 , 22, 102-110	4.1	22
348	Myocardial viability testing: all STICHed up, or about to be REVIVED?. European Heart Journal, 2021,	9.5	4
347	Myocardial Fibrosis and Inflammation by CMR Predict Cardiovascular Outcome in People Living With HIV. <i>JACC: Cardiovascular Imaging</i> , 2021 , 14, 1548-1557	8.4	7
346	Multimodality Cardiovascular Imaging in the Midst of the COVID-19 Pandemic: Ramping Up Safely to a New Normal. <i>JACC: Cardiovascular Imaging</i> , 2020 , 13, 1615-1626	8.4	35
345	Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2020 , 22, 19	6.9	173
344	How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). <i>European Journal of Heart Failure</i> , 2020 , 22, 391-412	12.3	84
343	Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions - Comparison of uremic, hypertensive and hypertrophic cardiomyopathy. <i>International Journal of Cardiology</i> , 2020 , 306, 102-108	3.2	16
342	Circulating Th17 and Th22 Cells Are Associated With CMR Imaging Biosignatures of Diffuse Myocardial Interstitial Remodeling in Chronic Coronary Artery Disease. <i>Circulation Research</i> , 2020 , 127, 699-701	15.7	2
341	Sub-segmental quantification of single (stress)-pass perfusion CMR improves the diagnostic accuracy for detection of obstructive coronary artery disease. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2020 , 22, 14	6.9	6

(2018-2020)

340	Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2020 , 22, 17	6.9	213
339	CMR in Pericardial Diseases - an Update. Current Cardiovascular Imaging Reports, 2020, 13, 1	0.7	6
338	Contemporary Cardiac MRI in Chronic Coronary Artery Disease. <i>European Cardiology Review</i> , 2020 , 15, e50	3.9	5
337	Prevalence and prognostic impact of nonischemic late gadolinium enhancement in stress cardiac magnetic resonance. <i>Journal of Cardiovascular Medicine</i> , 2020 , 21, 980-985	1.9	1
336	Cardiac Imaging in the Post-ISCHEMIA Trial Era: A Multisociety Viewpoint. <i>JACC: Cardiovascular Imaging</i> , 2020 , 13, 1815-1833	8.4	10
335	Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). <i>JAMA Cardiology</i> , 2020 , 5, 1265-1273	16.2	929
334	Left Ventricular Hypertrabeculation Is Not Associated With Cardiovascular Morbity or Mortality: Insights From the Eurocmr Registry. <i>Frontiers in Cardiovascular Medicine</i> , 2020 , 7, 158	5.4	6
333	How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). <i>European Heart Journal</i> , 2019 , 40, 3297-3317	9.5	379
332	Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. <i>New England Journal of Medicine</i> , 2019 , 380, 2418-2428	59.2	184
331	Cardiac MRI: a Promising Diagnostic Tool to Detect Cancer Therapeutics R elated Cardiac Dysfunction. <i>Current Cardiovascular Imaging Reports</i> , 2019 , 12, 1	0.7	
330	Aortic stiffness is independently associated with interstitial myocardial fibrosis by native T1 and accelerated in the presence of chronic kidney disease. <i>IJC Heart and Vasculature</i> , 2019 , 24, 100389	2.4	10
329	Controversies in Diagnostic Imaging of Patients With Suspected Stable and Acute Chest Pain Syndromes. <i>JACC: Cardiovascular Imaging</i> , 2019 , 12, 1254-1278	8.4	3
328	Range Variability in CMR Feature Tracking Multilayer Strain across Different Stages of Heart Failure. <i>Scientific Reports</i> , 2019 , 9, 16478	4.9	11
327	Clinical indications for cardiovascular magnetic resonance. <i>Heart</i> , 2019 , 105, 1755-1762	5.1	6
326	Towards standardized postprocessing of global longitudinal strain by feature tracking - OptiStrain CMR-FT study. <i>BMC Cardiovascular Disorders</i> , 2019 , 19, 267	2.3	4
325	Improved long-term durability of allogeneic heart valves in the orthotopic sheep model. <i>European Journal of Cardio-thoracic Surgery</i> , 2019 , 55, 484-493	3	13
324	CMR imaging biosignature of cardiac involvement due to cancer-related treatment by T1 and T2 mapping. <i>International Journal of Cardiology</i> , 2019 , 275, 179-186	3.2	31
323	Towards the Clinical Management of Cardiac Involvement in Systemic Inflammatory Conditions Central Role for CMR. <i>Current Cardiovascular Imaging Reports</i> , 2018 , 11, 1	0.7	6

322	Native T1 and ECV of Noninfarcted Myocardium and Outcome in Patients With Coronary Artery Disease. <i>Journal of the American College of Cardiology</i> , 2018 , 71, 766-778	15.1	62
321	Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. <i>European Heart Journal Cardiovascular Imaging</i> , 2018 , 19, 768-776	4.1	40
320	Imaging the myocardial ischemic cascade. <i>International Journal of Cardiovascular Imaging</i> , 2018 , 34, 124	9215263	3 24
319	T1 and T2 mapping in myocarditis: seeing beyond the horizon of Lake Louise criteria and histopathology. <i>Expert Review of Cardiovascular Therapy</i> , 2018 , 16, 319-330	2.5	11
318	Role of Cardiac Magnetic Resonance in Heart Failure with Preserved Ejection Fraction. <i>Current Cardiovascular Imaging Reports</i> , 2018 , 11, 1	0.7	3
317	Impact of T-cell-mediated immune response on xenogeneic heart valve transplantation: short-term success and mid-term failure. <i>European Journal of Cardio-thoracic Surgery</i> , 2018 , 53, 784-792	3	5
316	High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. <i>Annals of the Rheumatic Diseases</i> , 2018 , 77, 1590-1598	2.4	28
315	Dual-energy CT of the heart current and future status. <i>European Journal of Radiology</i> , 2018 , 105, 110-11	8 4.7	18
314	Definition of Left Ventricular Segments for Cardiac Magnetic Resonance Imaging. <i>JACC:</i> Cardiovascular Imaging, 2018 , 11, 926-928	8.4	12
313	Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2018 , 20, 67	6.9	61
312	Cardiac Troponin T Concentrations, Reversible Myocardial Ischemia, and Indices of Left Ventricular Remodeling in Patients with Suspected Stable Angina Pectoris: a DOPPLER-CIP Substudy. <i>Clinical Chemistry</i> , 2018 , 64, 1370-1379	5.5	10
311	Automatic T2* determination for quantification of iron load in heart and liver: a comparison between automatic inline Maximum Likelihood Estimate and the truncation and offset methods. <i>Clinical Physiology and Functional Imaging</i> , 2017 , 37, 299-304	2.4	4
310	Comparative Effectiveness Trials of Imaging-Guided Strategies in Stable (Ischemic Heart Disease. <i>JACC: Cardiovascular Imaging</i> , 2017 , 10, 321-334	8.4	12
309	T1 and T2 Mapping in Recognition of Early Cardiac Involvement in Systemic Sarcoidosis. <i>Radiology</i> , 2017 , 285, 63-72	20.5	83
308	Quantitative assessment of left ventricular mechanical dyssynchrony using cine cardiovascular magnetic resonance imaging: Inter-study reproducibility. <i>JRSM Cardiovascular Disease</i> , 2017 , 6, 2048004	1 0 1 1771	10142
307	The assessment of ischaemic burden: validation of a functional jeopardy score against cardiovascular magnetic resonance perfusion imaging. <i>Clinical Research in Cardiology</i> , 2017 , 106, 259-27	6.1	4
306	Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. <i>PLoS ONE</i> , 2017 , 12, e0188292	3.7	9
305	High-throughput gadobutrol-enhanced CMR: a time and dose optimization study. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2017 , 19, 83	6.9	28

(2016-2017)

304	Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical results'. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2017 , 19, 97	6.9	19
303	Correlation of Fractional Flow Reserve With Ischemic Burden Measured by Cardiovascular Magnetic Resonance Perfusion Imaging. <i>American Journal of Cardiology</i> , 2017 , 120, 1913-1919	3	5
302	Fast and Fully Automatic Left Ventricular Segmentation and Tracking in Echocardiography Using Shape-Based B-Spline Explicit Active Surfaces. <i>IEEE Transactions on Medical Imaging</i> , 2017 , 36, 2287-229	96 ^{11.7}	38
301	The effect of initial teaching on evaluation of left ventricular volumes by cardiovascular magnetic resonance imaging: comparison between complete and intermediate beginners and experienced observers. <i>BMC Medical Imaging</i> , 2017 , 17, 33	2.9	2
300	Clinical evaluation of three-dimensional late enhancement MRI. <i>Journal of Magnetic Resonance Imaging</i> , 2017 , 45, 1675-1683	5.6	8
299	Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2017 , 19, 68	6.9	14
298	Native T1 and T2 mapping by CMR in lupus myocarditis: Disease recognition and response to treatment. <i>International Journal of Cardiology</i> , 2016 , 222, 717-726	3.2	59
297	Deciphering cardiac involvement in systemic inflammatory diseases: noninvasive tissue characterisation using cardiac magnetic resonance is key to improved patients' care. <i>Expert Review of Cardiovascular Therapy</i> , 2016 , 14, 1283-1295	2.5	12
296	CMR First-Pass Perfusion for Suspected Inducible Myocardial Ischemia. <i>JACC: Cardiovascular Imaging</i> , 2016 , 9, 1338-1348	8.4	44
295	T1 and T2 Mapping in[Nonischemic Cardiomyopathies and Agreement With Endomyocardial Biopsy. Journal of the American College of Cardiology, 2016 , 68, 1923-1924	15.1	7
294	Standardised postprocessing of native T2 in detection and discrimination of myocarditis - comparison with native T1 mapping. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2016 , 18, O14	6.9	5
293	Blood Oxygenation Level-Dependent CMR-Derived Measures in Critical Limb Ischemia and Changes With Revascularization. <i>Journal of the American College of Cardiology</i> , 2016 , 67, 420-431	15.1	23
292	Native T1 in deciphering the reversible myocardial inflammation in cardiac sarcoidosis with anti-inflammatory treatment. <i>International Journal of Cardiology</i> , 2016 , 203, 459-62	3.2	12
291	Refractory ischaemic chest pain caused by microvascular coronary dysfunction in a large vessel vasculitis. <i>European Heart Journal Cardiovascular Imaging</i> , 2016 , 17, 702	4.1	3
290	MR Imaging of Coronary Arteries and Plaques. JACC: Cardiovascular Imaging, 2016, 9, 306-16	8.4	49
289	T1-Mapping and Outcome in Nonischemic Cardiomyopathy: All-Cause Mortality and Heart Failure. <i>JACC: Cardiovascular Imaging</i> , 2016 , 9, 40-50	8.4	263
288	Perfusion dyssynchrony analysis. European Heart Journal Cardiovascular Imaging, 2016, 17, 1414-1423	4.1	6
287	Multi-centre validation of an automatic algorithm for fast 4D myocardial segmentation in cine CMR datasets. <i>European Heart Journal Cardiovascular Imaging</i> , 2016 , 17, 1118-27	4.1	14

286	Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2016 , 18, 4	6.9	34
285	Advances in Cardiovascular MRI using Quantitative Tissue Characterisation Techniques: Focus on Myocarditis. <i>European Cardiology Review</i> , 2016 , 11, 20-24	3.9	1
284	T1 Mapping in Characterizing Myocardial Disease: A Comprehensive Review. <i>Circulation Research</i> , 2016 , 119, 277-99	15.7	168
283	Perfusion cardiovascular magnetic resonance and fractional flow reserve in patients with angiographic multi-vessel coronary artery disease. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2016 , 18, 44	6.9	14
282	Cardiovascular magnetic resonance in rheumatology: Current status and recommendations for use. <i>International Journal of Cardiology</i> , 2016 , 217, 135-48	3.2	76
281	Cardiac Positron Emission Tomography: a Clinical Perspective. <i>Current Cardiovascular Imaging Reports</i> , 2016 , 9, 1	0.7	1
280	Inter-study reproducibility of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking. <i>Journal of Magnetic Resonance Imaging</i> , 2016 , 43, 128-37	5.6	38
279	Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2016 , 18, 51	6.9	189
278	Validation of a new T2* algorithm and its uncertainty value for cardiac and liver iron load determination from MRI magnitude images. <i>Magnetic Resonance in Medicine</i> , 2016 , 75, 1717-29	4.4	7
277	Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. <i>Circulation: Cardiovascular Imaging</i> , 2015 , 8,	3.9	211
276	Noninvasive anatomical and functional assessment of coronary artery disease. <i>Revista Portuguesa De Cardiologia</i> , 2015 , 34, 223-32	1	3
275	T1 values by conservative septal postprocessing approach are superior in relating to the interstitial myocardial fibrosis: findings from patients with severe aortic stenosis. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2015 , 17,	6.9	8
274	Quantification of atrial dynamics using cardiovascular magnetic resonance: inter-study reproducibility. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2015 , 17, 36	6.9	38
273	Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve. <i>Circulation: Cardiovascular Imaging</i> , 2015 , 8,	3.9	43
272	A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model. <i>European Heart Journal</i>	4.1	22
271	Cardiovascular Imaging, 2015, 16, 1082-92 Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC: Cardiovascular Imaging, 2015, 8, 37-46	8.4	141
270	Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2015 , 17, 63	6.9	105
269	Myocardial feature tracking reduces observer-dependence in low-dose dobutamine stress cardiovascular magnetic resonance. <i>PLoS ONE</i> , 2015 , 10, e0122858	3.7	23

268	Noninvasive anatomical and functional assessment of coronary artery disease. <i>Revista Portuguesa De Cardiologia (English Edition)</i> , 2015 , 34, 223-232	0	2
267	Microsphere skimming in the porcine coronary arteries: Implications for flow quantification. <i>Microvascular Research</i> , 2015 , 100, 59-70	3.7	8
266	Influence of spatial resolution on the accuracy of quantitative myocardial perfusion in first pass stress perfusion CMR. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 1623-31	4.4	7
265	Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications. <i>JACC: Cardiovascular Imaging</i> , 2015 , 8, 1444-1460	8.4	236
264	T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy: Findings From the International T1 Multicenter Cardiovascular Magnetic Resonance Study. <i>Circulation: Cardiovascular Imaging</i> , 2015 , 8,	3.9	147
263	Abnormal myocardial perfusion in Kawasaki disease convalescence. <i>JACC: Cardiovascular Imaging</i> , 2015 , 8, 106-108	8.4	13
262	Aortic stiffness in the presence of self-limiting and sustained systemic inflammation: comparison of acute myocarditis and chronic inflammatory diseases. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2014 , 16,	6.9	78
261	Age-gender normal values of native and post-contrast myocardial T1 relaxation times (lambda) on 1.5T and 3T using MOLLI: a multicenter, single vendor cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2014 , 16, P23	6.9	4
2 60	Myocardial T2 mapping for improved detection of inflammatory myocardial involvement in acute and chronic myocarditis. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2014 , 16,	6.9	2
259	Cardiac magnetic resonance imaging findings and the risk of cardiovascular events in patients with recent myocardial infarction or suspected or known coronary artery disease: a systematic review of prognostic studies. <i>Journal of the American College of Cardiology</i> , 2014 , 63, 1031-45	15.1	98
258	Reply: prognostic role of CMR imaging after myocardial infarction. <i>Journal of the American College of Cardiology</i> , 2014 , 64, 2070	15.1	
257	Effects of tracer arrival time on the accuracy of high-resolution (voxel-wise) myocardial perfusion maps from contrast-enhanced first-pass perfusion magnetic resonance. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 2499-2506	5	15
256	Assessment of tissue perfusion in the lower limb: current methods and techniques under development. <i>Circulation: Cardiovascular Imaging</i> , 2014 , 7, 836-43	3.9	28
255	130 Reproducibility of T1 and T2 Mapping in Health and Disease, and Assessment of T2 Variability Across the Normal Myocardium. <i>Heart</i> , 2014 , 100, A76.1-A76	5.1	4
254	Coronary vessel wall contrast enhancement imaging as a potential direct marker of coronary involvement: integration of findings from CAD and SLE patients. <i>JACC: Cardiovascular Imaging</i> , 2014 , 7, 762-70	8.4	40
253	PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc). <i>International Journal of Cardiology</i> , 2014 , 177, 287-91	3.2	17
252	Ischemic burden by 3-dimensional myocardial perfusion cardiovascular magnetic resonance: comparison with myocardial perfusion scintigraphy. <i>Circulation: Cardiovascular Imaging</i> , 2014 , 7, 647-54	3.9	31
251	Enhancing coronary Wave Intensity Analysis robustness by high order central finite differences. <i>Artery Research</i> , 2014 , 8, 98-109	2.2	8

250	Comparative definitions for moderate-severe ischemia in stress nuclear, echocardiography, and magnetic resonance imaging. <i>JACC: Cardiovascular Imaging</i> , 2014 , 7, 593-604	8.4	127
249	Ischemic burden and clinical outcome: is one 'culprit' ischemic segment by dobutamine stress magnetic resonance predictive?. <i>PLoS ONE</i> , 2014 , 9, e115182	3.7	3
248	Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2014 , 16, 69	6.9	217
247	Quantitative assessment of magnetic resonance derived myocardial perfusion measurements using advanced techniques: microsphere validation in an explanted pig heart system. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2014 , 16, 82	6.9	21
246	Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular magnetic resonance at 3T using dual-source parallel RF transmission: initial experience. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2014 , 16, 90	6.9	13
245	Anatomical versus functional assessment of coronary artery disease: direct comparison of computed tomography coronary angiography and magnetic resonance myocardial perfusion imaging in patients with intermediate pre-test probability. <i>International Journal of Cardiovascular</i>	2.5	9
244	Prevalence of myocardial crypts in a large retrospective cohort study by cardiovascular magnetic resonance. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2014 , 16, 66	6.9	28
243	Chemotherapy-related cardiomyopathy in acute myeloid leukaemia assessed by cardiovascular magnetic resonance imaging. <i>European Heart Journal Cardiovascular Imaging</i> , 2014 , 15, 1410	4.1	2
242	Contrast-enhanced cardiovascular magnetic resonance imaging of coronary vessel wall: state of art. <i>Expert Review of Cardiovascular Therapy</i> , 2014 , 12, 255-63	2.5	4
241	Individualized cardiovascular risk assessment by cardiovascular magnetic resonance. <i>Future Cardiology</i> , 2014 , 10, 273-89	1.3	19
240	Automatic selection of optimal Savitzky-Golay filter parameters for Coronary Wave Intensity Analysis. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2014 , 2014, 5056-9	0.9	9
239	Aortic stiffness and interstitial myocardial fibrosis by native T1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. <i>Hypertension</i> , 2014 , 64, 762-8	8.5	46
238	Perfusion phantom: An efficient and reproducible method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance. <i>Magnetic Resonance in Medicine</i> , 2013 , 69, 698-707	4.4	37
237	Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. <i>JACC: Cardiovascular Imaging</i> , 2013 , 6, 475-84	8.4	309
236	Comparison of MR and CT for the Assessment of the Significance of Coronary Artery Disease: a Review. <i>Current Cardiovascular Imaging Reports</i> , 2013 , 6, 102-116	0.7	2
235	A Critical Review of Different Imaging Methods for the Assessment of Myocardial Ischemia. <i>Current Cardiovascular Imaging Reports</i> , 2013 , 6, 117-127	0.7	3
234	Magnetic resonance coronary angiography: where are we today?. <i>Current Cardiology Reports</i> , 2013 , 15, 328	4.2	17
233	Quantitative myocardial perfusion imaging by cardiovascular magnetic resonance and positron emission tomography. <i>Journal of Nuclear Cardiology</i> , 2013 , 20, 860-70; quiz 857-9, 871-3	2.1	16

(2013-2013)

232	Myocardial perfusion distribution and coronary arterial pressure and flow signals: clinical relevance in relation to multiscale modeling, a review. <i>Medical and Biological Engineering and Computing</i> , 2013 , 51, 1271-86	3.1	8
231	Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2013 , 15, 46	6.9	138
230	Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2013 , 15, 35	6.9	749
229	European Cardiovascular Magnetic Resonance (EuroCMR) registrymulti national results from 57 centers in 15 countries. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2013 , 15, 9	6.9	165
228	Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI versus FFR. <i>JACC: Cardiovascular Imaging</i> , 2013 , 6, 600-9	8.4	59
227	Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. <i>Journal of the American College of Cardiology</i> , 2013 , 61, 1099-107	15.1	128
226	Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2013 , 15, 91	6.9	494
225	Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2013 , 15, 62	6.9	13
224	Standardization of T1 measurements with MOLLI in differentiation between health and diseasethe ConSept study. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2013 , 15, 78	6.9	104
223	CV imaging: what was new in 2012?. <i>JACC: Cardiovascular Imaging</i> , 2013 , 6, 714-34	8.4	11
222	Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy. <i>International Journal of Cardiology</i> , 2013 , 166, 413-20	3.2	83
221	Reply: To PMID 23375929. Journal of the American College of Cardiology, 2013 , 62, 353	15.1	
220	Incremental value of adenosine stress cardiac magnetic resonance in coronary artery disease detection. <i>International Journal of Cardiology</i> , 2013 , 168, 4160-7	3.2	12
219	CAD detection in patients with intermediate-high pre-test probability: low-dose CT delayed enhancement detects ischemic myocardial scar with moderate accuracy but does not improve performance of a stress-rest CT perfusion protocol. <i>JACC: Cardiovascular Imaging</i> , 2013 , 6, 1062-1071	8.4	43
218	Erratum to The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength[[Eur. J. Radiol. 82 (2013) 296B01]. European Journal of Radiology, 2013, 82, 1036-1038	4.7	3
217	Four-dimensional image processing of myocardial CT perfusion for improved image quality and noise reduction. <i>Journal of Cardiovascular Computed Tomography</i> , 2013 , 7, 110-6	2.8	4
216	Platelet expression of stromal-cell-derived factor-1 (SDF-1): an indicator for ACS?. <i>International Journal of Cardiology</i> , 2013 , 164, 111-5	3.2	23
215	A bi-center cardiovascular magnetic resonance prognosis study focusing on dobutamine wall motion and late gadolinium enhancement in 3,138 consecutive patients. <i>Journal of the American College of Cardiology</i> , 2013 , 61, 2310-2	15.1	29

214	Reply: To PMID 23375929. Journal of the American College of Cardiology, 2013, 62, 354	15.1	
213	Cardiac magnetic resonance myocardial perfusion imaging for detection of functionally significant obstructive coronary artery disease: a prospective study. <i>International Journal of Cardiology</i> , 2013 , 168, 765-73	3.2	30
212	Validation of the BCIS-1 myocardial jeopardy score using cardiac magnetic resonance perfusion imaging. <i>Clinical Physiology and Functional Imaging</i> , 2013 , 33, 101-8	2.4	6
211	A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom. <i>Journal of Cardiovascular Computed Tomography</i> , 2013 , 7, 117-24	2.8	13
21 0	The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. <i>European Journal of Radiology</i> , 2013 , 82, 296-301	4.7	98
209	Determining optimal noninvasive parameters for the prediction of left ventricular remodeling in chronic ischemic patients. <i>Scandinavian Cardiovascular Journal</i> , 2013 , 47, 329-34	2	16
208	Left ventricular chamber dimensions and wall thickness by cardiovascular magnetic resonance: comparison with transthoracic echocardiography. <i>European Heart Journal Cardiovascular Imaging</i> , 2013 , 14, 240-6	4.1	45
207	Positron emission tomography/computed tomographic and magnetic resonance imaging in a murine model of progressive atherosclerosis using (64)Cu-labeled glycoprotein VI-Fc. <i>Circulation: Cardiovascular Imaging</i> , 2013 , 6, 957-64	3.9	15
206	Coronary wave energy: a novel predictor of functional recovery after myocardial infarction. <i>Circulation: Cardiovascular Interventions</i> , 2013 , 6, 166-75	6	24
205	Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. <i>Circulation: Cardiovascular Imaging</i> , 2013 , 6, 295-301	3.9	142
204	Value of serum pregnancy-associated plasma protein A for predicting cardiovascular events among patients presenting with cardiac chest pain. <i>Cmaj</i> , 2013 , 185, E295-303	3.5	16
203	Additive value of magnetic resonance coronary angiography in a comprehensive cardiac magnetic resonance stress-rest protocol for detection of functionally significant coronary artery disease: a pilot study. <i>Circulation: Cardiovascular Imaging</i> , 2013 , 6, 730-8	3.9	21
202	Plasma levels of soluble glycoprotein VI (sGPVI) are associated with ischemic stroke. <i>Platelets</i> , 2013 , 24, 560-5	3.6	21
201	Variability in quantitative cardiac magnetic resonance perfusion analysis. <i>Journal of Thoracic Disease</i> , 2013 , 5, 357-9	2.6	10
200	Modelling Parameter Role on Accuracy of Cardiac Perfusion Quantification. <i>Lecture Notes in Computer Science</i> , 2013 , 370-382	0.9	3
199	Myocardial blood flow quantification from MRI by deconvolution using an exponential approximation basis. <i>IEEE Transactions on Biomedical Engineering</i> , 2012 , 59, 2060-7	5	21
198	Value of cardiovascular magnetic resonance imaging in myocardial hypertrophy. <i>Clinical Research in Cardiology</i> , 2012 , 101, 237-8	6.1	7
197	Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. International Journal of Cardiology, 2012, 158, 26-32	3.2	115

196	Association of platelet-SDF-1 with hemodynamic function and infarct size using cardiac MR in patients with AMI. <i>European Journal of Radiology</i> , 2012 , 81, e486-90	4.7	29
195	Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2012 , 14, 31	6.9	61
194	Perfusion cardiovascular magnetic resonance: Comparison of an advanced, high-resolution and a standard sequence. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2012 , 14, 34	6.9	18
193	Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2012 , 14, 43	6.9	175
192	Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2012 , 14, 65	6.9	65
191	Copeptin as a prognostic factor for major adverse cardiovascular events in patients with coronary artery disease. <i>International Journal of Cardiology</i> , 2012 , 162, 27-32	3.2	39
190	Ruptured aneurysm of the sinus of valsalva insights from magnetic resonance first-pass myocardial perfusion imaging. <i>Journal of the American College of Cardiology</i> , 2012 , 59, 538	15.1	2
189	Imaging in the management of ischemic cardiomyopathy: special focus on magnetic resonance. <i>Journal of the American College of Cardiology</i> , 2012 , 59, 359-70	15.1	72
188	Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. <i>Journal of the American</i>	15.1	325
187	Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. Journal of the American College of Cardiology, 2012, 60, 756-65	15.1	87
186	Elevated plasma levels of neuropeptide proenkephalin a predict mortality and functional outcome in ischemic stroke. <i>Journal of the American College of Cardiology</i> , 2012 , 60, 346-54	15.1	35
185	Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. <i>Journal of the American College of Cardiology</i> , 2012 , 60, 1546-55	15.1	164
184	Contrast enhancement imaging in coronary arteries in SLE. <i>JACC: Cardiovascular Imaging</i> , 2012 , 5, 962-4	8.4	12
183	Visualization of chronic myocardial infarction using the intravascular contrast agent MS-325 (gadofosveset) in patients. <i>Scientific World Journal, The</i> , 2012 , 2012, 236401	2.2	9
182	Application of a high resolution T1 mapping with MOLLI (hrMOLLI) in patients in clinical setting: a reproducibility study. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2012 , 14, O82	6.9	78
181	Effect of tracer arrival time on the estimation of the myocardial perfusion in DCE-CMR. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2012 , 14, P16	6.9	4
180	First pass vasodilator-stress myocardial perfusion CMR in mice on a whole-body 3Tesla scanner: validation against microspheres. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2012 , 14,	6.9	78
179	Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison. <i>Magnetic Resonance in Medicine</i> , 2012 , 68, 1994-2004	4.4	37

178	End-systolic versus end-diastolic late gadolinium enhanced imaging for the assessment of scar transmurality. <i>International Journal of Cardiovascular Imaging</i> , 2012 , 28, 773-81	2.5	5
177	Usefulness of Cardiac Magnetic Resonance in Early Assessment of Cardiomyopathies: Myocardial Fibrosis Is a Common Denominator. <i>Current Cardiovascular Imaging Reports</i> , 2012 , 5, 77-82	0.7	8
176	Invasive aspergillosis: extensive cardiac involvement demonstrated by cardiac magnetic resonance. <i>Circulation</i> , 2012 , 126, 1780-3	16.7	10
175	Gender-specific differences in myocardial deformation and aortic stiffness at rest and dobutamine stress. <i>Hypertension</i> , 2012 , 59, 712-8	8.5	19
174	Letter by Puntmann et al regarding article, "Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy". <i>Circulation: Cardiovascular Imaging</i> , 2012 , 5, e66; author reply e67	3.9	2
173	Dual inversion-recovery mr imaging sequence for reduced blood signal on late gadolinium-enhanced images of myocardial scar. <i>Radiology</i> , 2012 , 264, 242-9	20.5	20
172	Quantitative cardiovascular magnetic resonance perfusion imaging: inter-study reproducibility. European Heart Journal Cardiovascular Imaging, 2012 , 13, 954-60	4.1	22
171	Platelets in cardiovascular imaging. Current Vascular Pharmacology, 2012, 10, 619-25	3.3	4
170	Cardiovascular magnetic resonance imaging of isolated perfused pig hearts in a 3T clinical MR scanner. <i>Interventional Medicine & Applied Science</i> , 2012 , 4, 186-92	0.7	8
169	022 Dynamic three-dimensional whole heart magnetic resonance myocardial perfusion imaging: validation against pressure wire derived fractional flow reserve for the detection of flow-limiting coronary heart disease. <i>Heart</i> , 2012 , 98, A14.2-A15	5.1	
168	118 First pass vasodilator-stress myocardial perfusion CMR in mice on a clinical whole-body 3 Tesla scanner: validation against microspheres. <i>Heart</i> , 2012 , 98, A66.2-A67	5.1	
167	025 Feasibility of combined cardiovascular MRI and percutaneous coronary intervention in a hybrid laboratory. <i>Heart</i> , 2012 , 98, A16.2-A18	5.1	
166	Predictors of circulating endothelial progenitor cell levels in patients without known coronary artery disease referred for multidetector computed tomography coronary angiography. <i>Revista Portuguesa De Cardiologia</i> , 2011 , 30, 753-60	1	5
165	High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. <i>Journal of the American College of Cardiology</i> , 2011 , 57, 70-5	15.1	160
164	Late gadolinium enhancement and sudden cardiac death in hypertrophic cardiomyopathy. <i>Journal of the American College of Cardiology</i> , 2011 , 57, 1402; author reply 1402-3	15.1	6
163	Noncompaction of the myocardium the value of cardiovascular magnetic resonance imaging. <i>Journal of the American College of Cardiology</i> , 2011 , 58, e25	15.1	2
162	Incremental value of an integrated adenosine stress-rest MDCT perfusion protocol for detection of obstructive coronary artery disease. <i>Journal of Cardiovascular Computed Tomography</i> , 2011 , 5, 392-405	2.8	29
161	Acute adverse reactions to gadolinium-based contrast agents in CMR: multicenter experience with 17,767 patients from the EuroCMR Registry. <i>JACC: Cardiovascular Imaging</i> , 2011 , 4, 1171-6	8.4	60

(2010-2011)

160	Training and accreditation in cardiovascular magnetic resonance in Europe: a position statement of the working group on cardiovascular magnetic resonance of the European Society of Cardiology. <i>European Heart Journal</i> , 2011 , 32, 793-8	9.5	39
159	Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. <i>Nature Medicine</i> , 2011 , 17, 383-8	50.5	147
158	Coronary imaging with cardiovascular magnetic resonance: current state of the art. <i>Progress in Cardiovascular Diseases</i> , 2011 , 54, 240-52	8.5	23
157	Assessment of acute myocardial infarction: current status and recommendations from the North American society for Cardiovascular Imaging and the European Society of Cardiac Radiology. <i>International Journal of Cardiovascular Imaging</i> , 2011 , 27, 7-24	2.5	46
156	Toward Full Quantification of Wall Motion with MRI. <i>Current Cardiovascular Imaging Reports</i> , 2011 , 4, 85-86	0.7	4
155	Does Late Enhancement Imaging Decipher the Role of Myocardial Fibrosis in Hypertrophic Cardiomyopathy?. <i>Current Cardiovascular Imaging Reports</i> , 2011 , 4, 87-89	0.7	
154	Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2011 , 13, 28	6.9	81
153	Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2011 , 13, 58	6.9	106
152	Impact of an abdominal belt on breathing patterns and scan efficiency in whole-heart coronary magnetic resonance angiography: comparison between the UK and Japan. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2011 , 13, 71	6.9	29
151	Dynamic simulation of first pass myocardial perfusion MR with a novel perfusion phantom. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2011 , 13,	6.9	3
150	Diagnostic performance of PET, SPECT and CMR perfusion imaging for the detection of significant coronary artery disease - a meta-analysis. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2011 , 13,	6.9	2
149	Cardiac MRI to investigate myocardial scar and coronary venous anatomy using a slow infusion of dimeglumine gadobenate in patients undergoing assessment for cardiac resynchronization therapy. <i>Journal of Magnetic Resonance Imaging</i> , 2011 , 33, 87-95	5.6	28
148	124 Validation of the BCIS-1 myocardial Jeopardy score using cardiac MRI. <i>Heart</i> , 2011 , 97, A71-A72	5.1	
147	Sandwich immunoassay for soluble glycoprotein VI in patients with symptomatic coronary artery disease. <i>Clinical Chemistry</i> , 2011 , 57, 898-904	5.5	23
146	Letter by Schuster et al regarding article, "Selecting a noninvasive imaging study after an inconclusive exercise test". <i>Circulation</i> , 2011 , 123, e632; author reply e633	16.7	1
145	Letter by Schuster and Nagel regarding article, "Predicting benefit from revascularization in patients with ischemic heart failure: imaging of myocardial ischemia and viability". <i>Circulation</i> , 2011 , 124, e296	16.7	1
144	Comparison of Perfusion and Wall Motion Cardiovascular Magnetic Resonance Imaging 2010 , 229-240		
143	Cardiac magnetic resonance imaging to guide complex revascularization in stable coronary artery disease. <i>European Heart Journal</i> , 2010 , 31, 2209-15	9.5	32

142	Noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. <i>Annals of Internal Medicine</i> , 2010 , 152, 827-8; author reply 828-9	8	7
141	083 Coronary vein and myocardial scar imaging with a single cardiac MRI examination using a high relaxivity contrast agent in patients with severe heart failure awaiting CRT implantation. <i>Heart</i> , 2010 , 96, A50.2-A51	5.1	
140	Quantitative Assessment of Myocardial Perfusion MRI. <i>Current Cardiovascular Imaging Reports</i> , 2010 , 3, 65-73	0.7	10
139	Unrecognized Myocardial Infarction: An Overlooked Epidemic. <i>Current Cardiovascular Imaging Reports</i> , 2010 , 3, 113-115	0.7	
138	Quantification in cardiac MRI: advances in image acquisition and processing. <i>International Journal of Cardiovascular Imaging</i> , 2010 , 26 Suppl 1, 27-40	2.5	88
137	Characterization of the inflammatory phenotype in atherosclerosis may contribute to the development of new therapeutic and preventative interventions. <i>Trends in Cardiovascular Medicine</i> , 2010 , 20, 176-81	6.9	8
136	Single breath-hold assessment of ventricular volumes using 32-channel coil technology and an extracellular contrast agent. <i>Journal of Magnetic Resonance Imaging</i> , 2010 , 31, 838-44	5.6	14
135	First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. <i>Magnetic Resonance in Medicine</i> , 2010 , 64, 1592-8	4.4	44
134	An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2010 , 12, 53	6.9	37
133	Gadofosveset injection for magnetic resonance angiography. <i>Imaging in Medicine</i> , 2010 , 2, 383-393	1	3
132	Perfusion Stress Magnetic Resonance 2010 , 205-222		
131	CMR and Detection of Coronary Artery Disease 2010 , 287-304		
130	Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. <i>Circulation</i> , 2009 , 119, 1671-81	16.7	71
129	Coronary computed tomography and magnetic resonance imaging. <i>Current Problems in Cardiology</i> , 2009 , 34, 145-217	17.1	8
128	How to identify the asymptomatic high-risk patient?. Current Problems in Cardiology, 2009, 34, 539-77	17.1	3
127	A threestepped coordinated level set segmentation method for identifying atherosclerotic plaques on MR-images. <i>Communications in Numerical Methods in Engineering</i> , 2009 , 25, 615-638		5
126	Quantification of myocardial perfusion using free-breathing MRI and prospective slice tracking. <i>Magnetic Resonance in Medicine</i> , 2009 , 61, 734-8	4.4	24
125	Cardiac magnetic resonance stress testing: results and prognosis. <i>Current Cardiology Reports</i> , 2009 , 11, 54-60	4.2	11

(2008-2009)

124	Assessment of myocardial ischemia and viability using cardiac magnetic resonance. <i>Current Heart Failure Reports</i> , 2009 , 6, 142-53	2.8	19
123	Advances in cardiac MRI: The MR-IMPACT trial. Current Cardiovascular Imaging Reports, 2009, 2, 83-84	0.7	
122	Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2009 , 11, 33	6.9	71
121	Current variables, definitions and endpoints of the European cardiovascular magnetic resonance registry. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2009 , 11, 43	6.9	20
120	Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2009 , 11, 5	6.9	138
119	Cardiac involvement of Echinococcus granulosus evaluated by multi-contrast CMR imaging. <i>International Journal of Cardiology</i> , 2009 , 131, e59-60	3.2	10
118	EuroCMR (European Cardiovascular Magnetic Resonance) registry: results of the German pilot phase. <i>Journal of the American College of Cardiology</i> , 2009 , 54, 1457-66	15.1	143
117	Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. <i>Journal of the American College of Cardiology</i> , 2009 , 54, 1770-7	15.1	133
116	Magnetic resonance adenosine perfusion imaging in patients after coronary artery bypass graft surgery. <i>JACC: Cardiovascular Imaging</i> , 2009 , 2, 437-45	8.4	31
115	Taking the last hurdles: magnetic resonance myocardial perfusion imaging. <i>JACC: Cardiovascular Imaging</i> , 2009 , 2, 434-6	8.4	2
114	Newer methods for noninvasive assessment of myocardial perfusion: cardiac magnetic resonance or cardiac computed tomography?. <i>JACC: Cardiovascular Imaging</i> , 2009 , 2, 656-60	8.4	8
113	k-t SENSE-accelerated myocardial perfusion MR imaging at 3.0 Tesla Leomparison with pressure wire measurement of fractional flow reserve. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2009 , 11,	6.9	78
112	European cardiovascular magnetic resonance (EUROCMR) registry [preliminary results of the German pilot phase. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2009 , 11,	6.9	78
111	Evaluation of contrast wash-in and peak enhancement in adenosine first pass perfusion in patients post bypass surgery. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2009 , 11,	6.9	78
110	Patient-specific coronary artery supply territory AHA diagrams. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2009 , 11,	6.9	78
109	Visualization of the cardiac venous system using cardiac magnetic resonance. <i>American Journal of Cardiology</i> , 2008 , 101, 407-12	3	66
108	Magnetic resonance cardiac vein imaging: relation to mitral valve annulus and left circumflex coronary artery. <i>JACC: Cardiovascular Imaging</i> , 2008 , 1, 729-38	8.4	28
107	Visualization of myocardial perfusion derived from coronary anatomy. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2008 , 14, 1595-602	4	13

106	Images in cardiovascular medicine. Papillary fibroelastoma of the tricuspid valve seen on magnetic resonance imaging. <i>Circulation</i> , 2008 , 117, e190-1	16.7	14
105	Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease. <i>Radiology</i> , 2008 , 247, 57-63	20.5	53
104	Structural and functional imaging by MRI. Basic Research in Cardiology, 2008, 103, 152-60	11.8	9
103	Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2008 , 10, 35	6.9	447
102	Dobutamine stress cardiovascular magnetic resonance at 3 Tesla. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2008 , 10, 44	6.9	17
101	Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2008 , 10, 45	6.9	55
100	Single-breathhold four-dimensional assessment of left ventricular volumes and function using k-t BLAST after application of extracellular contrast agent at 3 Tesla. <i>Journal of Magnetic Resonance Imaging</i> , 2008 , 27, 1028-36	5.6	12
99	Impact of heart rate variability in patients with normal sinus rhythm on image quality in coronary magnetic angiography. <i>Journal of Magnetic Resonance Imaging</i> , 2008 , 28, 74-9	5.6	15
98	Magnetic resonance coronary angiography with Vasovist: in-vivo T1 estimation to improve image quality of navigator and breath-hold techniques. <i>European Radiology</i> , 2008 , 18, 103-9	8	15
97	MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. <i>European Radiology</i> , 2008 , 18, 1995-2005	8	157
96	Vasovist□ for Imaging Ischemic and Congenital Heart Disease 2008 , 159-168		
95	Stress Cine MRI 2008 , 305-312		
94	Four-dimensional single breathhold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. <i>Journal of Magnetic Resonance Imaging</i> , 2007 , 25, 737-42	5.6	45
93	Improved bulk myocardial motion suppression for navigator-gated coronary magnetic resonance imaging. <i>Journal of Magnetic Resonance Imaging</i> , 2007 , 26, 780-6	5.6	20
92	Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. <i>American Journal of Cardiology</i> , 2007 , 99, 1109-14	3	117
91	Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. <i>American Journal of Cardiology</i> , 2007 , 100, 930-6	3	533
90	Giant right atrial myxoma verified by cardiovascular magnetic resonance. Herz, 2007, 32, 430-1	2.6	1
89	Experimental evaluation of the detectability of submillimeter atherosclerotic lesions in ex vivo human iliac arteries with ultrahigh-field (7.0 T) magnetic resonance imaging. <i>International Journal of Cardiovascular Imaging</i> , 2007 , 23, 519-27	2.5	14

(2006-2007)

Comparison of different MRI techniques for the assessment of thoracic aortic pathology: 3D contrast enhanced MR angiography, turbo spin echo and balanced steady state free precession. <i>International Journal of Cardiovascular Imaging</i> , 2007 , 23, 747-56	2.5	49
Cardiovascular MRI at 3 T. European Radiology, Supplement, 2007, 17 Suppl 6, F42-7		7
Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2007 , 9, 653-8	6.9	53
Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. <i>Circulation</i> , 2007 , 115, 1769-76	16.7	429
Improved quantitative assessment of left ventricular volumes using TGrE approach after application of extracellular contrast agent at 3 Tesla. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2007 , 9, 845-53	6.9	16
MR myocardial perfusion imaging with k-space and time broad-use linear acquisition speed-up technique: feasibility study. <i>Radiology</i> , 2007 , 245, 863-71	20.5	36
How we perform myocardial perfusion with cardiovascular magnetic resonance. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2007 , 9, 539-47	6.9	34
Whole-heart coronary magnetic resonance angiography with MS-325 (Gadofosveset). <i>Medical Science Monitor</i> , 2007 , 13, CR469-474	3.2	24
Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. <i>European Heart Journal</i> , 2006 , 27, 1459-64	9.5	80
ARVC with left ventricular involvement in a young woman. European Heart Journal, 2006, 27, 2510	9.5	1
Coronary MR imaging: breath-hold capability and patterns, coronary artery rest periods, and beta-blocker use. <i>Radiology</i> , 2006 , 239, 71-8	20.5	79
Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. <i>Radiology</i> , 2006 , 241, 718-28	20.5	47
Detection of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR angiography using the gadolinium-based intravascular contrast agent gadocoletic acid (B-22956). <i>Journal of Cardiovascular Magnetic Resonance</i> , 2006 , 8, 509-16	6.9	29
Images in cardiovascular medicine. Diagnosis of a "single" coronary artery and determination of functional significance of concomitant coronary artery disease. <i>Circulation</i> , 2006 , 113, e386-7	16.7	4
Images in cardiovascular medicine. Progressive myocardial fibrosis in a patient with apical hypertrophic cardiomyopathy detected by cardiovascular magnetic resonance. <i>Circulation</i> , 2006 , 114, e75-6	16.7	9
The impact of different positions and thoracial restrains on respiratory induced cardiac motion. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 483-8	6.9	9
Anatomical and functional evaluation of myocardial bridging on the left anterior descending artery by cardiovascular magnetic resonance imaging. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2006 , 8, 755-7	6.9	6
Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study. <i>Circulation</i> , 2006 , 113, 1093-100	16.7	66
	contrast enhanced MR angiography, turbo spin echo and balanced steady state free precession. International Journal of Cardiovascular Imaging, 2007, 23, 747-56 Cardiovascular MRI at 3 T. European Radiology, Supplement, 2007, 17 Suppl 6, F42-7 Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 653-8 Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation, 2007, 115, 1769-76 Improved quantitative assessment of left ventricular volumes using TGE approach after application of extracellular contrast agent at 3 Tesla. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 845-53 MR myocardial perfusion imaging with k-space and time broad-use linear acquisition speed-up technique; feasibility study. Radiology, 2007, 245, 863-71 How we perform myocardial perfusion with cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 539-47 Whole-heart coronary magnetic resonance angiography with MS-325 (Gadofosveset). Medical Science Monitor, 2007, 13, CR469-474 Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. European Heart Journal, 2006, 27, 21510 Coronary MR imaging: breath-hold capability and patterns, coronary artery rest periods, and beta-blocker use. Radiology, 2006, 239, 71-8 Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. Radiology, 2006, 241, 718-28 Detection of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR angiography using the gadolinium-based intravascular contrast agent gadocoletic acid (B-22956). Journal of Cardiovascular Magnetic Resonance, 2006, 8, 509-16 Images in cardiovascular medicine. Progressive myocardial fibrosis in a patient with apical hypertrophic cardiomyopathy detected by ca	contrast enhanced MR angiography, turbo spin echo and balanced steady state free precession. International Journal of Cardiovascular Imaging, 2007, 23, 747-56 Cardiovascular MRI at 3 T. European Radiology, Supplement, 2007, 17 Suppl 6, F42-7 Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 653-8 Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation, 2007, 115, 1769-76 Improved quantitative assessment of left ventricular volumes using TGFE approach after application of extracellular contrast agent at 3 Tesla. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 845-53 MR myocardial perfusion imaging with k-space and time broad-use linear acquisition speed-up technique; feasibility study, Radiology, 2007, 245, 863-71 How we perform myocardial perfusion with cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 539-47 Whole-heart coronary magnetic resonance angiography with MS-325 (Gadofosveset). Medical Science Monitor, 2007, 13, CR469-474 Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. European Heart Journal, 2006, 27, 1459-64 ARVC with left ventricular involvement in a young woman. European Heart Journal, 2006, 27, 2510 peterction of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR magnings: breath-hold capability and patterns, coronary artery rest periods, and beta-blocker use. Radiology, 2006, 241, 718-28 Detection of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR magnetypy using the gadolinium-based intravascular contrast agent gadocoletic acid (B-22956). Journal of Cardiovascular Magnetic Resonance, 2006, 8, 509-16 Images in cardiovascular medicine. Diagnosis of a "single" coronary arter

70	3D MR coronary angiography: optimization of the technique and preliminary results. <i>International Journal of Cardiovascular Imaging</i> , 2006 , 22, 489-91	2.5	1
69	Evaluation of multiple coronary artery aneurysms in Kawasaki's disease by whole heart non-contrast enhanced MRI. <i>International Journal of Cardiovascular Imaging</i> , 2006 , 22, 807-10	2.5	О
68	Myocardial Ischemia in Conditions Other Than Atheromatous Coronary Artery Disease 2006 , 277-286		
67	Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. <i>European Heart Journal</i> , 2005 , 26, 2313-9	9.5	110
66	Evaluation of new software for angiographic determination of right ventricular volumes. <i>International Journal of Cardiovascular Imaging</i> , 2005 , 21, 575-85	2.5	7
65	Primary fibrosarcoma of the liver infiltrating the right atrium of the heart. <i>International Journal of Cardiovascular Imaging</i> , 2005 , 21, 655-8	2.5	7
64	Magnetic resonance stress tagging in ischemic heart disease. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2005 , 288, H2708-14	5.2	51
63	Determinants of myocardial response in CMR perfusion imaging using Gd-BOPTA (Multihance). Journal of Cardiovascular Magnetic Resonance, 2005 , 7, 565-72	6.9	11
62	Images in cardiovascular medicine. Cast of complex congenital heart malformation in a living patient. <i>Circulation</i> , 2005 , 112, e356-7	16.7	11
61	Current clinical applications of stress wall motion analysis with cardiac magnetic resonance imaging. European Journal of Echocardiography, 2005 , 6, 317-26		15
60	Potential intrinsic error of noninvasive coronary angiography. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2005 , 7, 401-7	6.9	5
59	A new approach for rapid assessment of the cardiac rest period for coronary MRA. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2005 , 7, 395-9	6.9	35
58	MR coronary artery imaging with 3D motion adapted gating (MAG) in comparison to a standard prospective navigator technique. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2005 , 7, 793-7	6.9	12
57	Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. <i>European Heart Journal</i> , 2004 , 25, 1230-6	9.5	134
56	Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. <i>Radiology</i> , 2004 , 232, 669-76	20.5	67
55	MR coronary angiography with SH L 643 A: initial experience in patients with coronary artery disease. <i>Radiology</i> , 2004 , 233, 567-73	20.5	27
54	High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. <i>Radiology</i> , 2004 , 233, 210-6	20.5	62
53	Magnetic resonance imaging analysis of right ventricular pressure-volume loops: in vivo validation	16.7	292

(2003-2004)

52	Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. <i>Circulation</i> , 2004 , 110, 835-42	16.7	259
51	High-dose dobutamine stress cardiac magnetic resonance imaginghas its time come?. <i>European Heart Journal</i> , 2004 , 25, 1183-4	9.5	6
50	Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. <i>Circulation</i> , 2004 , 109, 2172-4	16.7	255
49	Comparison of radial and Cartesian imaging techniques for MR coronary angiography. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2004 , 6, 865-75	6.9	7
48	Myocardial perfusion imaging using OMNISCAN: a dose finding study for visual assessment of stress-induced regional perfusion abnormalities. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2004 , 6, 803-9	6.9	10
47	Color-Encoded Semiautomatic Analysis of Multi-Slice First-Pass Magnetic Resonance Perfusion: Comparison to Tetrofosmin Single Photon Emission Computed Tomography Perfusion and X-Ray Angiography. <i>International Journal of Cardiovascular Imaging</i> , 2004 , 20, 385-387		
46	Improved three-dimensional free-breathing coronary magnetic resonance angiography using gadocoletic acid (B-22956) for intravascular contrast enhancement. <i>Journal of Magnetic Resonance Imaging</i> , 2004 , 20, 288-93	5.6	44
45	The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. <i>Journal of Magnetic Resonance Imaging</i> , 2004 , 20, 588-93	5.6	105
44	Magnetic resonance imaging-guided transcatheter implantation of a prosthetic valve in aortic valve position: Feasibility study in swine. <i>Journal of the American College of Cardiology</i> , 2004 , 44, 2247-9	15.1	57
43	Dobutamine stress MR 2004 , 169-179		
42	Myocardial function and stress imaging 2004 , 89-110		
41	Myocarditis and pericarditis 2004 , 145-148		
40	Indications for cardiovascular magnetic resonance imaging 2004 , 67-71		
39	Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. <i>Circulation</i> , 2003 , 108, 432-7	16.7	519
38	Coronary arteries: contrast-enhanced MR imaging with SH L 643Aexperience in 12 volunteers. <i>Radiology</i> , 2003 , 229, 217-23	20.5	65
37	Improvement of image quality of non-invasive coronary artery imaging with magnetic resonance by the use of the intravascular contrast agent Clariscan (NC100150 injection) in patients with coronary artery disease. <i>Journal of Magnetic Resonance Imaging</i> , 2003 , 17, 656-62	5.6	26
36	Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. <i>Magnetic Resonance in Medicine</i> , 2003 , 49, 115-21	4.4	62
35	Cardiac magnetic resonance (CMR) imaging: a noninvasive tool for functional and morphological assessment of coronary artery disease: current clinical applications and potential future concepts. <i>Journal of Interventional Cardiology</i> , 2003 , 16, 457-63	1.8	6

The detection of normal, ischemic and infarcted myocardial tissue using MRI. <i>International Congress Series</i> , 2003 , 1256, 1153-1158		7
Images in cardiovascular medicine. Acute fibrinous pericarditis assessed with magnetic resonance imaging. <i>Circulation</i> , 2003 , 107, e82	16.7	19
Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. <i>Circulation</i> , 2003 , 107, 1738-43	16.7	69
Optimal acquisition parameters for contrast enhanced magnetic resonance imaging after chronic myocardial infarction. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2003 , 5, 575-87	6.9	21
In response to the article by Thomas Wittlinger and co-workers: Magnetic resonance imaging of coronary artery occlusions in the navigator technique. <i>International Journal of Cardiovascular Imaging</i> , 2002 , 18, 1-3		
Editorial comment: In response to the article by Thomas Wittlinger and co-workers. <i>International Journal of Cardiovascular Imaging</i> , 2002 , 18, 213-216		
Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2002 , 4, 327-39	6.9	86
Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wall-motion abnormalities in patients with coronary arterial disease. <i>Radiology</i> , 2002 , 224, 845-51	20.5	48
Indikationen zur kardiovaskulten Magnetresonanztomographie 2002 , 55-59		
Flussmessungen 2002 , 151-160		
Dobutamine induced myocardial perfusion reserve index with cardiovascular MR in patients with coronary artery disease. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2002 , 4, 471-80	6.9	16
	6.9 5.6	16
coronary artery disease. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2002 , 4, 471-80 Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds.		
coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2002, 4, 471-80 Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. Journal of Magnetic Resonance Imaging, 2001, 14, 300-5 Magnetic resonance flow measurements in real time: comparison with a standard gradient-echo	5.6	20
coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2002, 4, 471-80 Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. Journal of Magnetic Resonance Imaging, 2001, 14, 300-5 Magnetic resonance flow measurements in real time: comparison with a standard gradient-echo technique. Journal of Magnetic Resonance Imaging, 2001, 14, 306-10 Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. Journal of Magnetic Resonance Imaging,	5.6 5.6	20
Coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2002, 4, 471-80 Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. Journal of Magnetic Resonance Imaging, 2001, 14, 300-5 Magnetic resonance flow measurements in real time: comparison with a standard gradient-echo technique. Journal of Magnetic Resonance Imaging, 2001, 14, 306-10 Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. Journal of Magnetic Resonance Imaging, 2001, 14, 362-7 Accelerated coronary MRA by simultaneous acquisition of multiple 3D stacks. Journal of Magnetic	5.6 5.6	20 18 174
Comparison of magnetic resonance Imaging, 2001, 14, 300-5 Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. Journal of Magnetic Resonance Imaging, 2001, 14, 300-5 Magnetic resonance flow measurements in real time: comparison with a standard gradient-echo technique. Journal of Magnetic Resonance Imaging, 2001, 14, 306-10 Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. Journal of Magnetic Resonance Imaging, 2001, 14, 362-7 Accelerated coronary MRA by simultaneous acquisition of multiple 3D stacks. Journal of Magnetic Resonance Imaging, 2001, 14, 478-83 Comparison of magnetic resonance real-time imaging of left ventricular function with conventional	5.6 5.6 5.6	20 18 174
	Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. <i>Circulation</i> , 2003, 107, 1738-43 Optimal acquisition parameters for contrast enhanced magnetic resonance imaging after chronic myocardial infarction. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2003, 5, 575-87 In response to the article by Thomas Wittlinger and co-workers: Magnetic resonance imaging of coronary artery occlusions in the navigator technique. <i>International Journal of Cardiovascular Imaging</i> , 2002, 18, 1-3 Editorial comment: In response to the article by Thomas Wittlinger and co-workers. <i>International Journal of Cardiovascular Imaging</i> , 2002, 18, 213-216 Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2002, 4, 327-39 Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wall-motion abnormalities in patients with coronary arterial disease. <i>Radiology</i> , 2002, 224, 845-51 Indikationen zur kardiovaskulien Magnetresonanztomographie 2002, 55-59	Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. <i>Circulation</i> , 2003, 107, 1738-43 Optimal acquisition parameters for contrast enhanced magnetic resonance imaging after chronic myocardial infarction. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2003, 5, 575-87 In response to the article by Thomas Wittlinger and co-workers: Magnetic resonance imaging of coronary artery occlusions in the navigator technique. <i>International Journal of Cardiovascular Imaging</i> , 2002, 18, 1-3 Editorial comment: In response to the article by Thomas Wittlinger and co-workers. <i>International Journal of Cardiovascular Imaging</i> , 2002, 18, 213-216 Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2002, 4, 327-39 Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wall-motion abnormalities in patients with coronary arterial disease. <i>Radiology</i> , 2002, 224, 845-51 Indikationen zur kardiovaskulten Magnetresonanztomographie 2002, 55-59

LIST OF PUBLICATIONS

16	Magnetic resonance real-time imaging for the evaluation of left ventricular function. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2000 , 2, 7-14	6.9	53
15	Cardiac rotation and relaxation after anterolateral myocardial infarction. <i>Coronary Artery Disease</i> , 2000 , 11, 261-7	1.4	82
14	Cardiovascular magnetic resonance: myocardial perfusion. <i>Herz</i> , 2000 , 25, 409-16	2.6	32
13	Assessment of prosthetic aortic valve performance by magnetic resonance velocity imaging. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2000 , 10, 18-26	2.8	23
12	The intravascular contrast agent Clariscan (NC 100150 injection) for 3D MR coronary angiography in patients with coronary artery disease. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2000 , 11, 65-7	2.8	23
11	Coronary arterial stents: safety and artifacts during MR imaging. <i>Radiology</i> , 2000 , 216, 781-7	20.5	119
10	Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. <i>Circulation</i> , 2000 , 101, 1379-83	16.7	469
9	Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. <i>Journal of the American College of Cardiology</i> , 2000 , 36, 1557-64	15.1	113
8	Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. <i>Circulation</i> , 1999 , 99, 763-70	16.7	633
7	Functional MRI in ischemic heart disease based on detection of contraction abnormalities. <i>Journal of Magnetic Resonance Imaging</i> , 1999 , 10, 411-7	5.6	14
6	Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. <i>Magnetic Resonance in Medicine</i> , 1999 , 41, 544-9	4.4	56
5	Optimization of realtime adaptive navigator correction for 3D magnetic resonance coronary angiography. <i>Magnetic Resonance in Medicine</i> , 1999 , 42, 408-11	4.4	65
4	Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: Comparison of breath-hold and navigator techniques with intravascular ultrasound 1999 , 41, 544		1
3	Myocardial tagging for the analysis left ventricular function. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 1998 , 6, 91-3	2.8	5
2	Quantification of the local heartwall motion by magnetic resonance myocardial tagging. <i>Computerized Medical Imaging and Graphics</i> , 1998 , 22, 217-28	7.6	17
1	Coagulation activation in patients undergoing directional coronary atherectomy. <i>Thrombosis Research</i> , 1997 , 86, 433-41	8.2	14