Valentina O Puntmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5288764/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiology, 2020, 5, 1265.	3.0	1,659
2	Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-analysis. American Journal of Kidney Diseases, 2009, 54, 1012-1024.	2.1	1,612
3	Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. JACC: Cardiovascular Imaging, 2013, 6, 475-484.	2.3	386
4	T1-Mapping and Outcome in NonischemicÂCardiomyopathy. JACC: Cardiovascular Imaging, 2016, 9, 40-50.	2.3	380
5	Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. New England Journal of Medicine, 2019, 380, 2418-2428.	13.9	326
6	Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 69.	1.6	262
7	T1 Mapping in Characterizing Myocardial Disease. Circulation Research, 2016, 119, 277-299.	2.0	241
8	T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	200
9	Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of Ischemia/Reperfusion Injury. Circulation, 2012, 125, 789-802.	1.6	191
10	Native Myocardial T1 Mapping by Cardiovascular Magnetic Resonance Imaging in Subclinical Cardiomyopathy in Patients With Systemic Lupus Erythematosus. Circulation: Cardiovascular Imaging, 2013, 6, 295-301.	1.3	178
11	Native T1 in Discrimination of Acute and Convalescent Stages in Patients With ClinicalÂDiagnosis of Myocarditis. JACC: Cardiovascular Imaging, 2015, 8, 37-46.	2.3	177
12	Rapid Detection of Acute Kidney Injury by Plasma and Urinary Neutrophil Gelatinase-associated Lipocalin After Cardiopulmonary Bypass. Journal of Cardiovascular Pharmacology, 2009, 53, 261-266.	0.8	143
13	Standardization of T1 measurements with MOLLI in differentiation between health and disease – the ConSept study. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 78.	1.6	133
14	T1 and T2 Mapping in Recognition of Early Cardiac Involvement in Systemic Sarcoidosis. Radiology, 2017, 285, 63-72.	3.6	126
15	How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease. Postgraduate Medical Journal, 2009, 85, 538-545.	0.9	121
16	Cardiovascular magnetic resonance in rheumatology: Current status and recommendations for use. International Journal of Cardiology, 2016, 217, 135-148.	0.8	114
17	Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 67.	1.6	101
18	Native T1 and ECV of Noninfarcted Myocardium and Outcome in Patients WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2018, 71, 766-778.	1.2	100

#	Article	IF	CITATIONS
19	Native T1 and T2 mapping by CMR in lupus myocarditis: Disease recognition and response to treatment. International Journal of Cardiology, 2016, 222, 717-726.	0.8	75
20	Atherosclerosis and Oxidant Stress: The End of the Road for Antioxidant Vitamin Treatment?. Cardiovascular Drugs and Therapy, 2007, 21, 195-210.	1.3	74
21	MR Imaging of Coronary Arteries and Plaques. JACC: Cardiovascular Imaging, 2016, 9, 306-316.	2.3	64
22	CMR imaging biosignature of cardiac involvement due to cancer-related treatment by T1 and T2 mapping. International Journal of Cardiology, 2019, 275, 179-186.	0.8	60
23	Usefulness of Magnetic Resonance Imaging to Distinguish Hypertensive and Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2010, 106, 1016-1022.	0.7	57
24	Left ventricular chamber dimensions and wall thickness by cardiovascular magnetic resonance: comparison with transthoracic echocardiography. European Heart Journal Cardiovascular Imaging, 2013, 14, 240-246.	0.5	56
25	Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. European Heart Journal Cardiovascular Imaging, 2018, 19, 768-776.	0.5	56
26	Aortic Stiffness and Interstitial Myocardial Fibrosis by Native T1 Are Independently Associated With Left Ventricular Remodeling in Patients With Dilated Cardiomyopathy. Hypertension, 2014, 64, 762-768.	1.3	50
27	COVID-19 myocarditis and prospective heart failure burden. Expert Review of Cardiovascular Therapy, 2021, 19, 5-14.	0.6	50
28	High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2018, 77, 1590-1598.	0.5	48
29	Coronary Vessel Wall Contrast Enhancement Imaging as a Potential DirectÂMarker of Coronary Involvement. JACC: Cardiovascular Imaging, 2014, 7, 762-770.	2.3	46
30	Towards understanding the phenotypes of myocardial involvement in the presence of self-limiting and sustained systemic inflammation: a magnetic resonance imaging study. Rheumatology, 2010, 49, 528-535.	0.9	41
31	Prevalence of myocardial crypts in a large retrospective cohort study by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 66.	1.6	40
32	Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions – Comparison of uremic, hypertensive and hypertrophic cardiomyopathy. International Journal of Cardiology, 2020, 306, 102-108.	0.8	39
33	Coupling Vascular and Myocardial Inflammatory Injury into a Common Phenotype of Cardiovascular Dysfunction: Systemic Inflammation and Aging – A Mini-Review. Gerontology, 2011, 57, 295-303.	1.4	38
34	High-throughput gadobutrol-enhanced CMR: a time and dose optimization study. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 83.	1.6	38
35	Resonancia magnética cardiovascular en la práctica cardiológica: una guÃa concisa para la adquisición de imágenes y la interpretación clÁnica. Revista Espanola De Cardiologia, 2016, 69, 202-210.	0.6	36
36	Diagnostic and prognostic significance of cardiovascular magnetic resonance native myocardial T1 mapping in patients with pulmonary hypertension. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 78.	1.6	34

#	Article	IF	CITATIONS
37	Native T1 Mapping in the Diagnosis of Cardiac Allograft Rejection. JACC: Cardiovascular Imaging, 2019, 12, 1618-1628.	2.3	34
38	Sandwich Immunoassay for Soluble Glycoprotein VI in Patients with Symptomatic Coronary Artery Disease. Clinical Chemistry, 2011, 57, 898-904.	1.5	26
39	Myocardial Fibrosis and Inflammation by CMR Predict Cardiovascular Outcome in People Living With HIV. JACC: Cardiovascular Imaging, 2021, 14, 1548-1557.	2.3	26
40	Cardiovascular Magnetic Resonance for Rejection Surveillance After Cardiac Transplantation. Circulation, 2022, 145, 1811-1824.	1.6	26
41	Definition of Left Ventricular Segments for Cardiac Magnetic Resonance Imaging. JACC: Cardiovascular Imaging, 2018, 11, 926-928.	2.3	23
42	Gender-Specific Differences in Myocardial Deformation and Aortic Stiffness at Rest and Dobutamine Stress. Hypertension, 2012, 59, 712-718.	1.3	20
43	Individualized cardiovascular risk assessment by cardiovascular magnetic resonance. Future Cardiology, 2014, 10, 273-289.	0.5	20
44	Cardiovascular Magnetic Resonance in Cardiology Practice: A Concise Guide to Image Acquisition and Clinical Interpretation. Revista Espanola De Cardiologia (English Ed), 2016, 69, 202-210.	0.4	20
45	T1 and T2 mapping in myocarditis: seeing beyond the horizon of Lake Louise criteria and histopathology. Expert Review of Cardiovascular Therapy, 2018, 16, 319-330.	0.6	20
46	Role of oxidative stress in angiotensin-II mediated contraction of human conduit arteries in patients with cardiovascular disease. Vascular Pharmacology, 2005, 43, 277-282.	1.0	19
47	Aortic stiffness is independently associated with interstitial myocardial fibrosis by native T1 and accelerated in the presence of chronic kidney disease. IJC Heart and Vasculature, 2019, 24, 100389.	0.6	19
48	Improved long-term durability of allogeneic heart valves in the orthotopic sheep model. European Journal of Cardio-thoracic Surgery, 2019, 55, 484-493.	0.6	19
49	Value of serum pregnancy-associated plasma protein A for predicting cardiovascular events among patients presenting with cardiac chest pain. Cmaj, 2013, 185, E295-E303.	0.9	18
50	Cardiac biomarkers in chronic kidney disease are independently associated with myocardial edema and diffuse fibrosis by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 71.	1.6	18
51	Myocardial T1-mapping and extracellular volume in pulmonary arterial hypertension: A systematic review and meta-analysis. Magnetic Resonance Imaging, 2021, 79, 66-75.	1.0	16
52	Significance of Maximal and Regional Left Ventricular Wall Thickness in Association With Arrhythmic Events in Patients With Hypertrophic Cardiomyopathy. Circulation Journal, 2010, 74, 531-537.	0.7	15
53	T-Wave Alternans and Left Ventricular Wall Thickness in Predicting Arrhythmic Risk in Patients With Hypertrophic Cardiomyopathy. Circulation Journal, 2010, 74, 1197-1204.	0.7	14
54	T1 mapping - beware regional variations. European Heart Journal Cardiovascular Imaging, 2014, 15, 1302-1302.	0.5	14

#	Article	IF	CITATIONS
55	Sub-segmental quantification of single (stress)-pass perfusion CMR improves the diagnostic accuracy for detection of obstructive coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 14.	1.6	14
56	T1 mapping in myocarditis – headway to a new era for cardiovascular magnetic resonance. Expert Review of Cardiovascular Therapy, 2015, 13, 871-874.	0.6	13
57	Native T1 in deciphering the reversible myocardial inflammation in cardiac sarcoidosis with anti-inflammatory treatment. International Journal of Cardiology, 2016, 203, 459-462.	0.8	13
58	Contemporary Cardiac MRI in Chronic Coronary Artery Disease. European Cardiology Review, 2020, 15, e50.	0.7	13
59	Contrast Enhancement Imaging in Coronary Arteries in SLE. JACC: Cardiovascular Imaging, 2012, 5, 962-964.	2.3	12
60	Deciphering cardiac involvement in systemic inflammatory diseases: noninvasive tissue characterisation using cardiac magnetic resonance is key to improved patients' care. Expert Review of Cardiovascular Therapy, 2016, 14, 1283-1295.	0.6	12
61	Towards standardized postprocessing of global longitudinal strain by feature tracking – OptiStrain CMR-FT study. BMC Cardiovascular Disorders, 2019, 19, 267.	0.7	10
62	T1 values by conservative septal postprocessing approach are superior in relating to the interstitial myocardial fibrosis: findings from patients with severe aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P49.	1.6	9
63	T1 and T2 Mapping inÂNonischemic Cardiomyopathies and Agreement With Endomyocardial Biopsy. Journal of the American College of Cardiology, 2016, 68, 1923-1924.	1.2	9
64	Is Myocardial Native T1 the One Answer for All?. JACC: Cardiovascular Imaging, 2016, 9, 37-39.	2.3	9
65	Characterization of the Inflammatory Phenotype in Atherosclerosis May Contribute to the Development of New Therapeutic and Preventative Interventions. Trends in Cardiovascular Medicine, 2010, 20, 176-181.	2.3	8
66	Usefulness of Cardiac Magnetic Resonance in Early Assessment of Cardiomyopathies: Myocardial Fibrosis Is a Common Denominator. Current Cardiovascular Imaging Reports, 2012, 5, 77-82.	0.4	8
67	The role of oxidant stress in angiotensin II-mediated contraction of human resistance arteries in the state of health and the presence of cardiovascular disease. Vascular Pharmacology, 2006, 45, 395-399.	1.0	7
68	Towards the Clinical Management of Cardiac Involvement in Systemic Inflammatory Conditions—a Central Role for CMR. Current Cardiovascular Imaging Reports, 2018, 11, 1.	0.4	6
69	Quantitative perfusion-CMR is significantly influenced by the placement of the arterial input function. International Journal of Cardiovascular Imaging, 2021, 37, 1023-1031.	0.7	6
70	Contrast-enhanced cardiovascular magnetic resonance imaging of coronary vessel wall: state of art. Expert Review of Cardiovascular Therapy, 2014, 12, 255-263.	0.6	5
71	130â€Reproducibility of T1 and T2 Mapping in Health and Disease, and Assessment of T2 Variability Across the Normal Myocardium. Heart, 2014, 100, A76.1-A76.	1.2	5
72	Standardised postprocessing of native T2 in detection and discrimination of myocarditis - comparison with native T1 mapping. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 014.	1.6	5

#	Article	IF	CITATIONS
73	Circulating Th17 and Th22 Cells Are Associated With CMR Imaging Biosignatures of Diffuse Myocardial Interstitial Remodeling in Chronic Coronary Artery Disease. Circulation Research, 2020, 127, 699-701.	2.0	5
74	Aortic Stiffness and Heart Failure in Chronic Kidney Disease. Current Cardiovascular Imaging Reports, 2020, 13, 1.	0.4	5
75	Myocardial T2 mapping for improved detection of inflammatory myocardial involvement in acute and chronic myocarditis. Journal of Cardiovascular Magnetic Resonance, 2014, 16, O63.	1.6	4
76	Myocardial T1 mapping: a non-invasive alternative to tissue diagnosis?. European Heart Journal Cardiovascular Imaging, 2015, 16, 108-109.	0.5	4
77	Role of Cardiac Magnetic Resonance in Heart Failure with Preserved Ejection Fraction. Current Cardiovascular Imaging Reports, 2018, 11, 1.	0.4	4
78	Phenotyping transgenic animals—An integrated readout of pathophysiology by combining proteomics and metabolomics with cardiovascular imaging. Journal of Molecular and Cellular Cardiology, 2010, 48, 571-573.	0.9	2
79	Letter by Puntmann et al Regarding Article, "Prevalence and Clinical Profile of Myocardial Crypts in Hypertrophic Cardiomyopathy― Circulation: Cardiovascular Imaging, 2012, 5, e66; author reply e67.	1.3	2
80	Advances in Cardiovascular MRI using Quantitative Tissue Characterisation Techniques: Focus on Myocarditis. European Cardiology Review, 2016, 11, 20.	0.7	2
81	Gender differences in pulse wave velocity in young healthy adults at rest and exercise - the WellHeart Study. Journal of Cardiovascular Magnetic Resonance, 2013, 15, E83.	1.6	1
82	Syncope on exertion in a young male. HeartRhythm Case Reports, 2018, 4, 324-327.	0.2	1
83	Prevalence and prognostic impact of nonischemic late gadolinium enhancement in stress cardiac magnetic resonance. Journal of Cardiovascular Medicine, 2020, 21, 980-985.	0.6	1
84	Determination of scar area using native and post-contrast T1 mapping: Agreement with late gadolinium enhancement. European Journal of Radiology, 2022, 150, 110242.	1.2	1
85	An Interplay Between Left Ventricular Wall Thickness and T-Wave Alternans in Patients With Hypertrophic Cardiomyopathy in Predicting Ventricular Tachyarrythmic Events:. Circulation Journal, 2010, 74, 1767.	0.7	Ο
86	Does Late Enhancement Imaging Decipher the Role of Myocardial Fibrosis in Hypertrophic Cardiomyopathy?. Current Cardiovascular Imaging Reports, 2011, 4, 87-89.	0.4	0
87	Application of a high resolution T1 mapping with MOLLI (hrMOLLI) in patients in clinical setting: a reproducibility study. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	1.6	Ο
88	These abstracts have been selected for VIEWING only as ePosters and in print. ePosters will be available on Screen A & B throughout the meeting, Print Posters at the times indicated below. Please refer to the PROGRAM for more details European Heart Journal Cardiovascular Imaging, 2014, 15, i12-i33.	0.5	0
89	Cardiac MRI: a Promising Diagnostic Tool to Detect Cancer Therapeutics–Related Cardiac Dysfunction. Current Cardiovascular Imaging Reports, 2019, 12, 1.	0.4	0
90	Non-infarcted myocardium bears the weight in CVD. Aging, 2019, 11, 1609-1610.	1.4	0