Ramon Latorre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5288710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bisphosphonates Targeting Ion Channels and Musculoskeletal Effects. Frontiers in Pharmacology, 2022, 13, 837534.	1.6	13
2	Expression of H _v 1 proton channels in myeloid-derived suppressor cells (MDSC) and its potential role in T cell regulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104453119.	3.3	9
3	Profile of David Julius and Ardem Patapoutian: 2021 Nobel Laureates in Physiology or Medicine. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
4	Mechanism of voltage sensing in Ca ²⁺ - and voltage-activated K ⁺ (BK) channels. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
5	TRPM8 Channel Promotes the Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 592946.	1.8	8
6	The voltage sensor is responsible for ΔpH dependence in H _v 1 channels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
7	The Membrane Cholesterol Modulates the Interaction Between 17-βEstradiol and the BK Channel. Frontiers in Pharmacology, 2021, 12, 687360.	1.6	2
8	Thermodynamic and structural basis of temperature-dependent gating in TRP channels. Biochemical Society Transactions, 2021, 49, 2211-2219.	1.6	4
9	BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey. Frontiers in Physiology, 2021, 12, 761474.	1.3	13
10	A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20298-20304.	3.3	21
11	The molecular nature of the 17β-Estradiol binding site in the voltage- and Ca2+-activated K+ (BK) channel β1 subunit. Scientific Reports, 2019, 9, 9965.	1.6	14
12	Methods for Investigating TRP Channel Gating. Methods in Molecular Biology, 2019, 1987, 167-185.	0.4	1
13	Zoledronic Acid Modulation of TRPV1 Channel Currents in Osteoblast Cell Line and Native Rat and Mouse Bone Marrow-Derived Osteoblasts: Cell Proliferation and Mineralization Effect. Cancers, 2019, 11, 206.	1.7	29
14	Calcium-driven regulation of voltage-sensing domains in BK channels. ELife, 2019, 8, .	2.8	13
15	The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels. Journal of General Physiology, 2018, 150, 697-711.	0.9	19
16	Demonstration of ion channel synthesis by isolated squid giant axon provides functional evidence for localized axonal membrane protein translation. Scientific Reports, 2018, 8, 2207.	1.6	17
17	Determination of the Stoichiometry between α- and γ1 Subunits of the BK Channel Using LRET. Biophysical Journal, 2018, 114, 2493-2497.	0.2	9
18	Thermally activated TRP channels: molecular sensors for temperature detection. Physical Biology, 2018, 15, 021001.	0.8	80

#	Article	IF	CITATIONS
19	Gating charge displacement in a monomeric voltage-gated proton (H _v 1) channel. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9240-9245.	3.3	27
20	The enduring legacy of the "constant-field equation―in membrane ion transport. Journal of General Physiology, 2017, 149, 911-920.	0.9	18
21	Calcium binding and voltage gating in Cx46 hemichannels. Scientific Reports, 2017, 7, 15851.	1.6	10
22	Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiological Reviews, 2017, 97, 39-87.	13.1	213
23	β1-subunit–induced structural rearrangements of the Ca ²⁺ - and voltage-activated K ⁺ (BK) channel. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3231-9.	3.3	14
24	Signal Transduction-Dependent Channels. , 2016, , 85-112.		0
25	Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Annual Review of Biophysics, 2016, 45, 371-398.	4.5	51
26	Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins. Journal of Biological Chemistry, 2016, 291, 15740-15752.	1.6	13
27	Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1. Molecular Pharmacology, 2016, 90, 300-308.	1.0	18
28	Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel. Journal of General Physiology, 2015, 145, 61-74.	0.9	18
29	Molecular Determinants of Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Binding to Transient Receptor Potential V1 (TRPV1) Channels. Journal of Biological Chemistry, 2015, 290, 2086-2098.	1.6	65
30	Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8. Temperature, 2015, 2, 188-200.	1.6	15
31	Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4809-4814.	3.3	27
32	Voltageâ€gated proton (H _v 1) channels, a singular voltage sensing domain. FEBS Letters, 2015, 589, 3471-3478.	1.3	11
33	Biophysical and Molecular Features of Thermosensitive TRP Channels Involved in Sensory Transduction. , 2015, , 1-39.		4
34	Signal Transduction-Dependent Channels. , 2015, , 1-28.		0
35	Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits. Frontiers in Physiology, 2014, 5, 383.	1.3	53
36	Proton channel models. Channels, 2014, 8, 180-192.	1.5	12

#	Article	IF	CITATIONS
37	Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8). Journal of Biological Chemistry, 2014, 289, 35438-35454.	1.6	57
38	Gating of Thermally Activated Channels. Current Topics in Membranes, 2014, 74, 51-87.	0.5	35
39	Directionality of Temperature Activation in Mouse TRPA1 Ion Channel Can Be Inverted by Single-Point Mutations in Ankyrin Repeat Six. Neuron, 2014, 82, 1017-1031.	3.8	92
40	Signal Transduction–Dependent Channels. , 2013, , 81-107.		1
41	A BK (Slo1) channel journey from molecule to physiology. Channels, 2013, 7, 442-458.	1.5	143
42	Emerging Role of Calcium-Activated Potassium Channel in the Regulation of Cell Viability Following Potassium Ions Challenge in HEK293 Cells and Pharmacological Modulation. PLoS ONE, 2013, 8, e69551.	1.1	31
43	Modulation of BK channel voltage gating by different auxiliary \hat{I}^2 subunits. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18991-18996.	3.3	95
44	The first transmembrane domain (TM1) of β2â€subunit binds to the transmembrane domain S1 of αâ€subunit in BK potassium channels. FEBS Letters, 2012, 586, 2287-2293.	1.3	15
45	K ⁺ Channels: Functionâ€Structural Overview. , 2012, 2, 2087-2149.		179
46	Splicing of the rSlo Gene Affects the Molecular Composition and Drug Response of Ca2+-Activated K+ Channels in Skeletal Muscle. PLoS ONE, 2012, 7, e40235.	1.1	34
47	Voltage sensor of ion channels and enzymes. Biophysical Reviews, 2012, 4, 1-15.	1.5	16
48	A Cool Channel in Cold Transduction. Physiology, 2011, 26, 273-285.	1.6	50
49	Thermo-TRP Channels: Biophysics of Polymodal Receptors. Advances in Experimental Medicine and Biology, 2011, 704, 469-490.	0.8	31
50	SYMPOSIUM REVIEW: Allosteric interactions and the modular nature of the voltage- and Ca ²⁺ -activated (BK) channel. Journal of Physiology, 2010, 588, 3141-3148.	1.3	55
51	Structure–functional intimacies of transient receptor potential channels. Quarterly Reviews of Biophysics, 2009, 42, 201-246.	2.4	155
52	Intrinsic Electrostatic Potential in the BK Channel Pore: Role in Determining Single Channel Conductance and Block. Journal of General Physiology, 2008, 131, 147-161.	0.9	39
53	A Marriage of Convenience: β-Subunits and Voltage-dependent K+ Channels. Journal of Biological Chemistry, 2007, 282, 24485-24489.	1.6	102
54	Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10246-10251.	3.3	192

#	Article	IF	CITATIONS
55	ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium, 2007, 42, 427-438.	1.1	197
56	A Hot-Sensing Cold Receptor: C-Terminal Domain Determines Thermosensation in Transient Receptor Potential Channels. Journal of Neuroscience, 2006, 26, 4835-4840.	1.7	276
57	Large conductance Ca2+-activated K+ (BK) channel: Activation by Ca2+ and voltage. Biological Research, 2006, 39, 385-401.	1.5	139
58	Structural Determinants for Functional Coupling Between the β and α Subunits in the Ca2+-activated K+ (BK) Channel. Journal of General Physiology, 2006, 127, 191-204.	0.9	56
59	Voltage and Temperature Gating of ThermoTRP Channels. Frontiers in Neuroscience, 2006, , 287-302.	0.0	2
60	S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5020-5025.	3.3	34
61	Differential Effects of β1 and β2 Subunits on BK Channel Activity. Journal of General Physiology, 2005, 125, 395-411.	0.9	127
62	Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15494-15499.	3.3	324
63	Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. Journal of Clinical Investigation, 2004, 113, 1032-1039.	3.9	155
64	Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. Journal of Clinical Investigation, 2004, 113, 1032-1039.	3.9	110
65	Molecular Coupling between Voltage Sensor and Pore Opening in the Arabidopsis Inward Rectifier K+ Channel KAT1. Journal of General Physiology, 2003, 122, 459-469.	0.9	48
66	COUNTING CHANNELS: A TUTORIAL GUIDE ON ION CHANNEL FLUCTUATION ANALYSIS. American Journal of Physiology - Advances in Physiology Education, 2002, 26, 327-341.	0.8	93
67	New Disguises for an Old Channel: MaxiK Channel β-Subunits. Physiology, 2002, 17, 156-161.	1.6	204
68	Modulation of the Shaker K+Channel Gating Kinetics by the S3–S4 Linker. Journal of General Physiology, 2000, 115, 193-208.	0.9	72
69	Acute Activation of Maxi-K Channels (hSlo) by Estradiol Binding to the Subunit. Science, 1999, 285, 1929-1931.	6.0	479
70	Pore accessibility during C-type inactivation in Shaker K+ channels. FEBS Letters, 1998, 429, 375-380.	1.3	18
71	Role of the S4 Segment in a Voltage-dependent Calcium-sensitive Potassium (hSlo) Channel. Journal of Biological Chemistry, 1998, 273, 32430-32436.	1.6	106
72	Correlation between Charge Movement and Ionic Current during Slow Inactivation in Shaker K+ Channels. Journal of General Physiology, 1997, 110, 579-589.	0.9	182

#	Article	IF	CITATIONS
73	Probing a Ca2+-activated K+ channel with quaternary ammonium ions. Pflugers Archiv European Journal of Physiology, 1988, 413, 118-126.	1.3	127
74	Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature, 1985, 313, 316-318.	13.7	793
75	Conduction, Blockade and Gating in a Ca2+ -activated K+ Channel Incorporated into Planar Lipid Bilayers. Biophysical Journal, 1984, 45, 73-76.	0.2	104