Cunjin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5288408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis. Plant Cell, 2022, 34, 2892-2906.	6.6	8
2	SUMO enables substrate selectivity by mitogen-activated protein kinases to regulate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
3	SUMO Conjugation to BZR1 Enables Brassinosteroid Signaling to Integrate Environmental Cues to Shape Plant Growth. Current Biology, 2020, 30, 1410-1423.e3.	3.9	48
4	ldentification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. Frontiers in Plant Science, 2019, 10, 1150.	3.6	56
5	SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nature Communications, 2018, 9, 5185.	12.8	55
6	SUMO Suppresses the Activity of the Jasmonic Acid Receptor CORONATINE INSENSITIVE1. Plant Cell, 2018, 30, 2099-2115.	6.6	43
7	Rice <scp>SUMO</scp> protease <i>Overly Tolerant to Salt 1</i> targets the transcription factor, Osb <scp>ZIP</scp> 23 to promote drought tolerance in rice. Plant Journal, 2017, 92, 1031-1043.	5.7	59
8	BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation. PLoS Genetics, 2017, 13, e1006540.	3.5	41
9	The ubiquitin conjugating enzyme, TaU4 regulates wheat defence against the phytopathogen Zymoseptoria tritici. Scientific Reports, 2016, 6, 35683.	3.3	14
10	Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development. Plant Signaling and Behavior, 2016, 11, e1173301.	2.4	19
11	Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 353-363.	4.8	48
12	A functional Small Ubiquitin-like Modifier (SUMO) interacting motif (SIM) in the gibberellin hormone receptor GID1 is conserved in cereal crops and disrupting this motif does not abolish hormone dependency of the DELLA-GID1 interaction. Plant Signaling and Behavior, 2015, 10, e987528.	2.4	16
13	SUMOylation of phytochrome-B negatively regulates light-induced signaling in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11108-11113.	7.1	69
14	Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin. Developmental Cell, 2014, 28, 102-110.	7.0	139
15	A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees. PLoS Pathogens, 2012, 8, e1003083.	4.7	70
16	<i>Arabidopsis</i> Defense against <i>Botrytis cinerea</i> : Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis Â. Plant Cell, 2012, 24, 3530-3557.	6.6	337
17	High-Resolution Temporal Profiling of Transcripts during <i>Arabidopsis</i> Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation Â. Plant Cell, 2011, 23, 873-894.	6.6	776
18	Characterization of Serine Proteinase Expression in <i>Agaricus bisporus</i> and <i>Coprinopsis cinerea</i> by Using Green Fluorescent Protein and the <i>A. bisporus SPR1</i> Promoter. Applied and Environmental Microbiology, 2009, 75, 792-801.	3.1	26

#	Article	IF	CITATIONS
19	Hairpin-mediated down-regulation of the urea cycle enzyme argininosuccinate lyase in Agaricus bisporus. Mycological Research, 2008, 112, 708-716.	2.5	26
20	Agaricus bisporusandCoprinus bilanatus TRP2genes are tri-functional with conserved intron and domain organisations. FEMS Microbiology Letters, 2002, 208, 269-274.	1.8	6