
William G Pitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5288059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards detection of SARS-CoV-2 RNA in human saliva: A paper-based cell-free toehold switch biosensor with a visual bioluminescent output. New Biotechnology, 2022, 66, 53-60.	2.4	33
2	pH-Responsive Nanocarriers in Cancer Therapy. Polymers, 2022, 14, 936.	2.0	63
3	Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers, 2022, 14, 925.	2.0	30
4	Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems. Polymers, 2022, 14, 1286.	2.0	21
5	3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers. Micromachines, 2021, 12, 91.	1.4	19
6	Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacology and Translational Science, 2021, 4, 589-612.	2.5	65
7	Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacology and Translational Science, 2021, 4, 1028-1049.	2.5	39
8	A pentaplex real-time PCR assay for rapid identification of major beta-lactamase genes KPC, NDM, CTX, CMY, and OXA-48 directly from bacteria in blood. Journal of Medical Microbiology, 2021, 70, .	0.7	0
9	Latanoprost uptake and release from commercial contact lenses. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1-19.	1.9	19
10	Factors affecting sedimentational separation of bacteria from blood. Biotechnology Progress, 2020, 36, e2892.	1.3	6
11	Effect of dilution on sedimentational separation of bacteria from blood. Biotechnology Progress, 2020, 36, e3056.	1.3	0
12	Analysis of Identification Method for Bacterial Species and Antibiotic Resistance Genes Using Optical Data From DNA Oligomers. Frontiers in Microbiology, 2020, 11, 257.	1.5	5
13	3D hydrodynamic focusing in microscale channels formed with two photoresist layers. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	9
14	Heat set creases in polyethylene terephthalate (PET) sheets to enable origami-based applications. Smart Materials and Structures, 2019, 28, 115047.	1.8	10
15	An experimental investigation of interfacial instability in separated blood. AICHE Journal, 2019, 65, 1376-1386.	1.8	3
16	Drop on a bent fibre. Soft Matter, 2018, 14, 3724-3729.	1.2	15
17	Sequence-specific sepsis-related DNA capture and fluorescent labeling in monoliths prepared by single-step photopolymerization in microfluidic devices. Journal of Chromatography A, 2018, 1562, 12-18.	1.8	19
18	Codelivery of Doxorubicin and Verapamil for Treating Multidrug Resistant Cancer Cells. Pharmaceutical Nanotechnology, 2018, 6, 116-123.	0.6	7

#	Article	IF	CITATIONS
19	Baseline effects of lysophosphatidylcholine and nerve growth factor in a rat model of sciatic nerve regeneration after crush injury. Neural Regeneration Research, 2018, 13, 846.	1.6	3
20	Rapid separation of very low concentrations of bacteria from blood. Journal of Microbiological Methods, 2017, 139, 48-53.	0.7	21
21	Rapid separation of bacteria from blood – Chemical aspects. Colloids and Surfaces B: Biointerfaces, 2017, 154, 365-372.	2.5	18
22	Rapid loading and prolonged release of latanoprost from a silicone hydrogel contact lens. Journal of Drug Delivery Science and Technology, 2017, 41, 410-418.	1.4	26
23	Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review. Current Pharmaceutical Design, 2016, 22, 2796-2807.	0.9	74
24	The upside-down water collection system of Syntrichia caninervis. Nature Plants, 2016, 2, 16076.	4.7	137
25	Cellâ€free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a justâ€øddâ€water cellâ€free system. Biotechnology Journal, 2016, 11, 274-281.	1.8	129
26	Rapid separation of bacteria from blood—review and outlook. Biotechnology Progress, 2016, 32, 823-839.	1.3	71
27	Factors Affecting Ultrasonic Release from eLiposomes. Journal of Pharmaceutical Sciences, 2015, 104, 1373-1384.	1.6	6
28	Focused ultrasound-induced blood-brain barrier opening for non-viral, non-invasive, and targeted gene delivery. Journal of Controlled Release, 2015, 212, 1-9.	4.8	79
29	Extended elution of phospholipid from silicone hydrogel contact lenses. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 224-234.	1.9	7
30	Cytosolic deliveryviaescape from the endosome using emulsion droplets and ultrasound. Journal of Drug Targeting, 2015, 23, 469-479.	2.1	11
31	Kinetics of Ultrasonic Drug Delivery from Targeted Micelles. Journal of Nanoscience and Nanotechnology, 2015, 15, 2099-2104.	0.9	21
32	Investigating the Stability of eLiposomes at Elevated Temperatures. Technology in Cancer Research and Treatment, 2015, 14, 379-382.	0.8	7
33	Prevention and Removal of Lipid Deposits by Lens Care Solutions and Rubbing. Optometry and Vision Science, 2014, 91, 1430-1439.	0.6	14
34	Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: A mathematical model. Ultrasonics Sonochemistry, 2014, 21, 879-891.	3.8	49
35	Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 67-76.	1.7	92
36	The role of multi-purpose solutions in prevention and removal of lipid depositions on contact lenses. Contact Lens and Anterior Eye, 2014, 37, 405-414.	0.8	10

#	Article	IF	CITATIONS
37	Ultrasonically triggered drug delivery: Breaking the barrier. Colloids and Surfaces B: Biointerfaces, 2014, 123, 364-386.	2.5	65
38	Investigating the Release Mechanism of Calcein from eLiposomes at Higher Temperatures. Journal of Colloid Science and Biotechnology, 2014, 3, 239-244.	0.2	7
39	Development of Ultrasound Sensitive eLiposomes Containing Doxorubicin for Drug Delivery. British Journal of Pharmaceutical Research, 2014, 4, 2296-2311.	0.4	1
40	Investigating the acoustic release of doxorubicin from targeted micelles. Colloids and Surfaces B: Biointerfaces, 2013, 101, 153-155.	2.5	47
41	Mathematical modeling of microbubble cavitation at 70 kHz and the importance of the subharmonic in drug delivery from micelles. Ultrasonics, 2013, 53, 97-110.	2.1	19
42	Comparing microbubble cavitation at 500 kHz and 70 kHz related to micellar drug delivery using ultrasound. Ultrasonics, 2013, 53, 377-386.	2.1	16
43	Ultrasonic gene and drug delivery using eLiposomes. Journal of Controlled Release, 2013, 167, 92-100.	4.8	71
44	Acoustic Droplet Vaporization in Biology and Medicine. BioMed Research International, 2013, 2013, 1-13.	0.9	69
45	Quantitation of cholesterol and phospholipid sorption on silicone hydrogel contact lenses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1516-1523.	1.6	19
46	Transport of Phospholipid in Silicone Hydrogel Contact Lenses. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 527-541.	1.9	11
47	Ultrasound-Induced Calcein Release From eLiposomes. Ultrasound in Medicine and Biology, 2012, 38, 2163-2173.	0.7	40
48	Cyclic Voltammetry Investigation of Organic Species Considered for Use as Catalysts in Direct-Carbohydrate Fuel Cells. Journal of the Electrochemical Society, 2012, 159, H834-H841.	1.3	4
49	Encapsulating Nanoemulsions Inside eLiposomes for Ultrasonic Drug Delivery. Langmuir, 2012, 28, 14720-14729.	1.6	70
50	Formation of eLiposomes as a drug delivery vehicle. Colloids and Surfaces B: Biointerfaces, 2012, 89, 93-100.	2.5	51
51	Monoalkyl viologens are effective carbohydrate O2-oxidation catalysts for electrical energy generation by fuel cells. Renewable Energy, 2012, 46, 218-223.	4.3	9
52	Phase transitions of nanoemulsions using ultrasound: Experimental observations. Ultrasonics Sonochemistry, 2012, 19, 1120-1125.	3.8	42
53	Non-Viral Gene Transfection with Ultrasound: Is 100% Transfection Possible?. Advanced Science Letters, 2012, 11, 98-105.	0.2	1
54	Loading and Release of a Phospholipid From Contact Lenses. Optometry and Vision Science, 2011, 88, 502-506.	0.6	23

#	Article	IF	CITATIONS
55	Preliminary Results of Combining Low Frequency Low Intensity Ultrasound and Liposomal Drug Delivery to Treat Tumors in Rats. Journal of Nanoscience and Nanotechnology, 2011, 11, 1866-1870.	0.9	23
56	Optimizing the use of ultrasound to deliver chemotherapeutic agents to cancer cells from polymeric micelles. Journal of the Franklin Institute, 2011, 348, 1276-1284.	1.9	21
57	Kinetics of acoustic release of doxorubicin from stabilized and unstabilized micelles and the effect of temperature. Journal of the Franklin Institute, 2011, 348, 125-133.	1.9	14
58	A Comparison between Dialkyl and Monoalkyl Viologens for Use in Direct-Carbohydrate Fuel Cells. ECS Transactions, 2011, 41, 1737-1745.	0.3	0
59	Distribution of Doxorubicin in Rats Undergoing Ultrasonic Drug Delivery. Journal of Pharmaceutical Sciences, 2010, 99, 3122-3131.	1.6	33
60	Kinetics and thermodynamics of acoustic release of doxorubicin from non-stabilized polymeric micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359, 18-24.	2.3	25
61	Degradation kinetics of stabilized Pluronic micelles under the action of ultrasound. Journal of Controlled Release, 2009, 138, 45-48.	4.8	24
62	Ultrasonic-Activated Micellar Drug Delivery for Cancer Treatment. Journal of Pharmaceutical Sciences, 2009, 98, 795-811.	1.6	71
63	Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats. Cancer Chemotherapy and Pharmacology, 2009, 64, 593-600.	1.1	33
64	Over-Pressure Suppresses Ultrasonic-Induced Drug Uptake. Ultrasound in Medicine and Biology, 2009, 35, 409-415.	0.7	31
65	Using Artificial Neural Networks and Model Predictive Control to Optimize Acoustically Assisted Doxorubicin Release from Polymeric Micelles. Technology in Cancer Research and Treatment, 2009, 8, 479-488.	0.8	33
66	Ultrasound in drug and gene delivery. Advanced Drug Delivery Reviews, 2008, 60, 1095-1096.	6.6	25
67	Micelles and nanoparticles for ultrasonic drug and gene delivery. Advanced Drug Delivery Reviews, 2008, 60, 1137-1152.	6.6	405
68	On bubbles and liposomes (June 11, 2007). Journal of Controlled Release, 2008, 125, 174-175.	4.8	3
69	The Use of Ultrasound and Micelles in Cancer Treatment. Journal of Nanoscience and Nanotechnology, 2008, 8, 2205-2215.	0.9	62
70	Modeling and Sensitivity Analysis of Acoustic Release of Doxorubicin from Unstabilized Pluronic P105 Using an Artificial Neural Network Model. Technology in Cancer Research and Treatment, 2007, 6, 49-56.	0.8	40
71	Release of Doxorubicin from Unstabilized and Stabilized Micelles Under the Action of Ultrasound. Journal of Nanoscience and Nanotechnology, 2007, 7, 1028-1033.	0.9	77
72	Measurement of Activities of Toluene and Trichloroethylene in Polyisobutylene. Journal of Chemical & Engineering Data, 2007, 52, 2233-2236.	1.0	2

#	Article	IF	CITATIONS
73	The Role of Cavitation in Liposome Formation. Biophysical Journal, 2007, 93, 4100-4107.	0.2	87
74	Further investigation of the mechanism of Doxorubicin release from P105 micelles using kinetic models. Colloids and Surfaces B: Biointerfaces, 2007, 55, 59-66.	2.5	34
75	Selection of polymeric sensor arrays for quantitative analysis. Sensors and Actuators B: Chemical, 2007, 120, 386-391.	4.0	5
76	Modeling carbon black/polymer composite sensors. Sensors and Actuators B: Chemical, 2007, 125, 396-407.	4.0	48
77	Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa. Journal of General and Applied Microbiology, 2006, 52, 295-301.	0.4	76
78	Dynamic removal of oral biofilms by bubbles. Colloids and Surfaces B: Biointerfaces, 2006, 52, 39-46.	2.5	30
79	A polymeric micelle system with a hydrolysable segment for drug delivery. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 591-604.	1.9	32
80	Removal of Streptococcus mutans biofilm by bubbles. Journal of Clinical Periodontology, 2005, 32, 1151-1156.	2.3	24
81	The role of cavitation in acoustically activated drug delivery. Journal of Controlled Release, 2005, 107, 253-261.	4.8	145
82	The Comet Assay to Determine the Mode of Cell Death for the Ultrasonic Delivery of Doxorubicin to Human Leukemia (HL-60 Cells) from Pluronic P105 Micelles. Technology in Cancer Research and Treatment, 2005, 4, 707-711.	0.8	38
83	Removal of oral biofilms by bubbles. Journal of the American Dental Association, 2005, 136, 1688-1693.	0.7	13
84	Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. American Journal of Infection Control, 2005, 33, 78-82.	1.1	126
85	Poly(ethylene oxide)-b-poly(N-isopropylacrylamide) nanoparticles with cross-linked cores as drug carriers. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 371-380.	1.9	36
86	Removal of oral biofilm by sonic phenomena. American Journal of Dentistry, 2005, 18, 345-52.	0.1	27
87	Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. Journal of Infection and Chemotherapy, 2004, 10, 193-199.	0.8	103
88	Resistivity measurements of carbon–polymer composites in chemical sensors: impact of carbon concentration and geometry. Sensors and Actuators B: Chemical, 2004, 101, 122-132.	4.0	39
89	Attachment of hyaluronan to metallic surfaces. Journal of Biomedical Materials Research Part B, 2004, 68A, 95-106.	3.0	53
90	Ultrasonic drug delivery – a general review. Expert Opinion on Drug Delivery, 2004, 1, 37-56.	2.4	518

#	Article	IF	CITATIONS
91	Drug delivery in polymeric micelles: from in vitro to in vivo. Journal of Controlled Release, 2003, 91, 85-95.	4.8	180
92	Ultrasound Increases the Rate of Bacterial Cell Growth. Biotechnology Progress, 2003, 19, 1038-1044.	1.3	267
93	Defining the Role of Ultrasound in Drug Delivery. American Journal of Drug Delivery, 2003, 1, 27-42.	0.6	12
94	Water structure around enkephalin near a GeO2 surface: a molecular dynamics study. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 885-906.	1.9	2
95	Sequestration and Ultrasound-Induced Release of Doxorubicin from Stabilized Pluronic P105 Micelles. Drug Delivery, 2002, 9, 253-258.	2.5	61
96	Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer, 2002, 2, 20.	1.1	48
97	Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. Journal of Controlled Release, 2002, 83, 303-305.	4.8	94
98	Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. Journal of Controlled Release, 2002, 84, 39-47.	4.8	194
99	Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids and Surfaces B: Biointerfaces, 2002, 24, 253-264.	2.5	88
100	Intracellular uptake of Pluronic copolymer: effects of the aggregation state. Colloids and Surfaces B: Biointerfaces, 2002, 25, 233-241.	2.5	44
101	Comparison of corneal epithelial cellular growth on synthetic cornea materials. Biomaterials, 2002, 23, 1369-1373.	5.7	23
102	Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Research, 2002, 62, 7280-3.	0.4	109
103	Attachment of hyaluronic acid to polypropylene, polystyrene, and polytetrafluoroethylene. Biomaterials, 2000, 21, 31-36.	5.7	90
104	The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloids and Surfaces B: Biointerfaces, 2000, 17, 219-227.	2.5	64
105	Factors affecting acoustically triggered release of drugs from polymeric micelles. Journal of Controlled Release, 2000, 69, 43-52.	4.8	216
106	Stabilization of Pluronic P-105 Micelles with an Interpenetrating Network of N,N-Diethylacrylamide. Macromolecules, 2000, 33, 9306-9309.	2.2	74
107	Pulsed Ultrasound Enhances the Killing of Escherichia coli Biofilms by Aminoglycoside Antibiotics In Vivo. Antimicrobial Agents and Chemotherapy, 2000, 44, 771-772.	1.4	114
108	DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Letters, 2000, 154, 211-216.	3.2	66

#	Article	IF	CITATIONS
109	Ultrasonic Enhancement of Antibiotic Action on <i>Escherichia coli</i> Biofilms: an In Vivo Model. Antimicrobial Agents and Chemotherapy, 1999, 43, 1211-1214.	1.4	112
110	Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. Journal of Controlled Release, 1999, 58, 153-162.	4.8	117
111	Investigation of the mechanism of the bioacoustic effect. , 1999, 44, 198-205.		74
112	Investigation of the mechanism of the bioacoustic effect. , 1999, 44, 198.		1
113	Water Structure around Enkephalin near a PE Surface: A Molecular Dynamics Study. Journal of Colloid and Interface Science, 1998, 203, 47-58.	5.0	23
114	Treatment of bacterial biofilms on polymeric biomaterials using antibiotics and ultrasound. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1177-1185.	1.9	45
115	Ultrasonic enhancement of antibiotic action on several species of bacteria Journal of General and Applied Microbiology, 1998, 44, 283-288.	0.4	50
116	In Vitro Response of Escherichia Coli to Antibiotics and Ultrasound at Various Insonation Intensities. Journal of Biomaterials Applications, 1997, 12, 20-30.	1.2	23
117	Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Letters, 1997, 118, 13-19.	3.2	92
118	The effect of ultrasonic frequency upon enhanced killing ofP. aeruginosa biofilms. Annals of Biomedical Engineering, 1997, 25, 69-76.	1.3	113
119	The role of insonation intensity in acoustic-enhanced antibiotic treatment of bacterial biofilms. Colloids and Surfaces B: Biointerfaces, 1997, 9, 239-245.	2.5	29
120	Calculation of Protein-Polymer Force Fields Using Molecular Dynamics. Journal of Colloid and Interface Science, 1997, 185, 258-264.	5.0	9
121	Bacterial adhesion to orthopedic implant polymers. , 1996, 30, 403-410.		80
122	Measurement of bacterial growth rates on polymers. , 1996, 32, 271-278.		40
123	Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials, 1996, 17, 1975-1980.	5.7	82
124	Effects of ultrasonic treatment on the efficacy of gentamicin against established Pseudomonas aeruginosa biofilms. Colloids and Surfaces B: Biointerfaces, 1996, 6, 235-242.	2.5	19
125	Improving adhesion in interleaf composites using plasma processing. Journal of Applied Polymer Science, 1995, 56, 461-469.	1.3	8
126	The influence of plasma gas species on the adhesion of thermoplastic to organic fibers. Journal of Applied Polymer Science, 1993, 48, 845-856.	1.3	42

#	Article	IF	CITATIONS
127	Bacterial adhesion to poly(HEMA)-based hydrogels. Journal of Biomedical Materials Research Part B, 1993, 27, 119-126.	3.0	52
128	Air-water interface displaces adsorbed bacteria. Biomaterials, 1993, 14, 605-608.	5.7	62
129	Bacterial Adhesion to Protein-Coated Hydrogels. Journal of Biomaterials Applications, 1993, 8, 72-89.	1.2	24
130	Fibronectin adsorpton kinetics on phase segregated polyurethaneureas. Journal of Biomaterials Science, Polymer Edition, 1993, 4, 337-346.	1.9	9
131	Fibronectin adsorpton kinetics on phase segregated polyurethaneureas. Journal of Biomaterials Science, Polymer Edition, 1993, 4, 337-346.	1.9	1
132	Sticking coefficients of adsorbing proteins. Biomaterials, 1992, 13, 577-584.	5.7	22
133	Low fluorescence background electroblotting membrane for DNA sequencing. Electrophoresis, 1992, 13, 105-114.	1.3	8
134	Comments on protein adsorption on polymer surfaces: calculation of adsorption energies. Journal of Biomaterials Science, Polymer Edition, 1991, 2, 317-320.	1.9	1
135	A New Technique to Improve Adhesion of Polyaramid Fibers to Thermoplastic. Journal of Thermoplastic Composite Materials, 1991, 4, 253-265.	2.6	4
136	Fabrication of a continuous wettability gradient by radio frequency plasma discharge. Journal of Colloid and Interface Science, 1989, 133, 223-227.	5.0	72
137	Properties of extruded poly(tetramethylene oxide) Polyurethane block copolymers for blood-contacting applications. Biomaterials, 1987, 8, 329-340.	5.7	18
138	Sequential protein adsorption and thrombus deposition on polymeric biomaterials. Journal of Colloid and Interface Science, 1986, 111, 343-362.	5.0	116