Aleksei Aksimentiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5287825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable molecular dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics, 2020, 153, 044130.	3.0	1,548
2	Imaging α-Hemolysin with Molecular Dynamics: Ionic Conductance, Osmotic Permeability, and the Electrostatic Potential Map. Biophysical Journal, 2005, 88, 3745-3761.	0.5	620
3	Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Letters, 2012, 12, 1038-1044.	9.1	343
4	Microscopic Kinetics of DNA Translocation through Synthetic Nanopores. Biophysical Journal, 2004, 87, 2086-2097.	0.5	323
5	Orientation discrimination of single-stranded DNA inside the Â-hemolysin membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12377-12382.	7.1	308
6	Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nature Biotechnology, 2020, 38, 176-181.	17.5	308
7	Waterâ~'Silica Force Field for Simulating Nanodevices. Journal of Physical Chemistry B, 2006, 110, 21497-21508.	2.6	283
8	Improved Parametrization of Li ⁺ , Na ⁺ , K ⁺ , and Mg ²⁺ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems. Journal of Physical Chemistry Letters, 2012, 3, 45-50.	4.6	275
9	Assessing Graphene Nanopores for Sequencing DNA. Nano Letters, 2012, 12, 4117-4123.	9.1	237
10	Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science, 2021, 374, 1509-1513.	12.6	222
11	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	19.0	198
12	Modeling and Simulation of Ion Channels. Chemical Reviews, 2012, 112, 6250-6284.	47.7	196
13	The Electromechanics of DNA in a Synthetic Nanopore. Biophysical Journal, 2006, 90, 1098-1106.	0.5	181
14	New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Physical Chemistry Chemical Physics, 2018, 20, 8432-8449.	2.8	180
15	Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nature Communications, 2016, 7, 10813.	12.8	177
16	Large-Conductance Transmembrane Porin Made from DNA Origami. ACS Nano, 2016, 10, 8207-8214.	14.6	171
17	Stretching DNA Using the Electric Field in a Synthetic Nanopore. Nano Letters, 2005, 5, 1883-1888.	9.1	166
18	Detection of DNA Sequences Using an Alternating Electric Field in a Nanopore Capacitor. Nano Letters, 2008, 8, 56-63.	9.1	162

#	Article	IF	CITATIONS
19	Simulation of the electric response of DNA translocation through a semiconductor nanopore–capacitor. Nanotechnology, 2006, 17, 622-633.	2.6	157
20	Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale, 2010, 2, 468.	5.6	156
21	Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9810-9815.	7.1	152
22	Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano, 2015, 9, 10598-10611.	14.6	148
23	In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20099-20104.	7.1	144
24	Electro-osmotic screening of the DNA charge in a nanopore. Physical Review E, 2008, 78, 021912.	2.1	142
25	Detecting SNPs Using a Synthetic Nanopore. Nano Letters, 2007, 7, 1680-1685.	9.1	133
26	Improved Parameterization of Amine–Carboxylate and Amine–Phosphate Interactions for Molecular Dynamics Simulations Using the CHARMM and AMBER Force Fields. Journal of Chemical Theory and Computation, 2016, 12, 430-443.	5.3	132
27	Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics. Journal of Chemical Physics, 2007, 127, 125101.	3.0	126
28	Ion Channels Made from a Single Membrane-Spanning DNA Duplex. Nano Letters, 2016, 16, 4665-4669.	9.1	124
29	Nanopore Sensing of Protein Folding. ACS Nano, 2017, 11, 7091-7100.	14.6	122
30	Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell, 2019, 179, 1098-1111.e23.	28.9	122
31	Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 2020, 15, 73-79.	31.5	111
32	Competitive Binding of Cations to Duplex DNA Revealed through Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 12946-12954.	2.6	105
33	Slowing DNA Transport Using Graphene–DNA Interactions. Advanced Functional Materials, 2015, 25, 936-946.	14.9	102
34	A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nature Communications, 2018, 9, 2426.	12.8	101
35	Graphene Nanopores for Protein Sequencing. Advanced Functional Materials, 2016, 26, 4830-4838.	14.9	100
36	Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene. Nature Communications, 2014, 5, 5171.	12.8	97

#	Article	IF	CITATIONS
37	DNA Attraction in Monovalent and Divalent Electrolytes. Journal of the American Chemical Society, 2008, 130, 15754-15755.	13.7	95
38	Mechanical Properties of a Complete Microtubule Revealed through Molecular Dynamics Simulation. Biophysical Journal, 2010, 99, 629-637.	0.5	90
39	Predicting the DNA Sequence Dependence of Nanopore Ion Current Using Atomic-Resolution Brownian Dynamics. Journal of Physical Chemistry C, 2012, 116, 3376-3393.	3.1	90
40	DNA–DNA Interactions in Tight Supercoils Are Described by a Small Effective Charge Density. Physical Review Letters, 2010, 105, 158101.	7.8	88
41	Smooth DNA Transport through a Narrowed Pore Geometry. Biophysical Journal, 2014, 107, 2381-2393.	0.5	88
42	Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 983-988.	7.1	87
43	Ionic Current Rectification through Silica Nanopores. Journal of Physical Chemistry C, 2009, 113, 1850-1862.	3.1	86
44	Ionic Conductivity, Structural Deformation, and Programmable Anisotropy of DNA Origami in Electric Field. ACS Nano, 2015, 9, 1420-1433.	14.6	86
45	Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores. Biophysical Journal, 2009, 96, 593-608.	0.5	84
46	Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Nanotechnology Magazine, 2010, 9, 281-294.	2.0	81
47	End-to-end attraction of duplex DNA. Nucleic Acids Research, 2012, 40, 3812-3821.	14.5	81
48	A Coarse-Grained Model of Unstructured Single-Stranded DNA Derived from Atomistic Simulation and Single-Molecule Experiment. Journal of Chemical Theory and Computation, 2014, 10, 2891-2896.	5.3	79
49	Electric and electrophoretic inversion of the DNA charge in multivalent electrolytes. Soft Matter, 2010, 6, 243-246.	2.7	78
50	Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling. Journal of Physical Chemistry C, 2014, 118, 9809-9819.	3.1	77
51	DNA Base-Calling from a Nanopore Using a Viterbi Algorithm. Biophysical Journal, 2012, 102, L37-L39.	0.5	75
52	Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix. Nanotechnology, 2010, 21, 395501.	2.6	74
53	Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating. Journal of Physical Chemistry Letters, 2015, 6, 4680-4687	4.6	74
54	Molecular Dynamics Study of MspA Arginine Mutants Predicts Slow DNA Translocations and Ion Current Blockades Indicative of DNA Sequence. ACS Nano, 2012, 6, 6960-6968.	14.6	72

#	Article	IF	CITATIONS
55	The structure and intermolecular forces of DNA condensates. Nucleic Acids Research, 2016, 44, 2036-2046.	14.5	70
56	Nanopore Analysis of Individual RNA/Antibiotic Complexes. ACS Nano, 2011, 5, 9345-9353.	14.6	69
57	The role of molecular modeling in bionanotechnology. Physical Biology, 2006, 3, S40-S53.	1.8	68
58	Rectification of the Current in α-Hemolysin Pore Depends on the Cation Type: The Alkali Series Probed by Molecular Dynamics Simulations and Experiments. Journal of Physical Chemistry C, 2011, 115, 4255-4264.	3.1	68
59	Mechanical Trapping of DNA in a Double-Nanopore System. Nano Letters, 2016, 16, 8021-8028.	9.1	68
60	<i>De novo</i> reconstruction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Research, 2016, 44, 3013-3019.	14.5	67
61	SDS-assisted protein transport through solid-state nanopores. Nanoscale, 2017, 9, 11685-11693.	5.6	67
62	MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Research, 2020, 48, 5135-5146.	14.5	67
63	Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology, 2006, 17, 3160-3165.	2.6	65
64	Stretching and unzipping nucleic acid hairpins using a synthetic nanopore. Nucleic Acids Research, 2008, 36, 1532-1541.	14.5	65
65	Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation. Nature Communications, 2016, 7, 11045.	12.8	64
66	Molecular Mechanism of Spontaneous Nucleosome Unraveling. Journal of Molecular Biology, 2019, 431, 323-335.	4.2	63
67	Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Research, 2019, 47, 11441-11451.	14.5	60
68	Sequence-dependent DNA condensation as a driving force of DNA phase separation. Nucleic Acids Research, 2018, 46, 9401-9413.	14.5	55
69	Picomolar Fingerprinting of Nucleic Acid Nanoparticles Using Solid-State Nanopores. ACS Nano, 2017, 11, 9701-9710.	14.6	54
70	Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. Nature Nanotechnology, 2021, 16, 911-917.	31.5	54
71	Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model. ACS Sensors, 2019, 4, 634-644.	7.8	53
72	Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore. Biomedical Microdevices, 2011, 13, 671-682.	2.8	52

#	Article	IF	CITATIONS
73	PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nature Communications, 2018, 9, 3661.	12.8	50
74	Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes. Nano Letters, 2008, 8, 3916-3921.	9.1	49
75	Molecular dynamics simulations of DNA–DNA and DNA–protein interactions. Current Opinion in Structural Biology, 2020, 64, 88-96.	5.7	49
76	Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores. ACS Nano, 2013, 7, 6816-6824.	14.6	48
77	Water Mediates Recognition of DNA Sequence <i>via</i> Ionic Current Blockade in a Biological Nanopore. ACS Nano, 2016, 10, 4644-4651.	14.6	48
78	Control and reversal of the electrophoretic force on DNA in a charged nanopore. Journal of Physics Condensed Matter, 2010, 22, 454123.	1.8	46
79	Close encounters with DNA. Journal of Physics Condensed Matter, 2014, 26, 413101.	1.8	46
80	Polyhydrazideâ€Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angewandte Chemie - International Edition, 2020, 59, 4806-4813.	13.8	46
81	Step-defect guided delivery of DNA to a graphene nanopore. Nature Nanotechnology, 2019, 14, 858-865.	31.5	45
82	Beyond the gene chip. Bell Labs Technical Journal, 2005, 10, 5-22.	0.7	44
83	Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. ACS Applied Materials & Interfaces, 2016, 8, 12599-12608.	8.0	44
84	Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures. Journal of the American Chemical Society, 2021, 143, 7358-7367.	13.7	44
85	Modeling transport through synthetic nanopores. IEEE Nanotechnology Magazine, 2009, 3, 20-28.	1.3	43
86	Optical Voltage Sensing Using DNA Origami. Nano Letters, 2018, 18, 1962-1971.	9.1	43
87	Strain Softening in Stretched DNA. Physical Review Letters, 2008, 101, 118101.	7.8	42
88	Interference-Free Detection of Genetic Biomarkers Using Synthetic Dipole-Facilitated Nanopore Dielectrophoresis. ACS Nano, 2017, 11, 1204-1213.	14.6	42
89	Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate. Journal of Physical Chemistry Letters, 2020, 11, 4923-4929.	4.6	42
90	Chiral Systems Made from DNA. Advanced Science, 2021, 8, 2003113.	11.2	42

6

#	Article	IF	CITATIONS
91	Two Structural Scenarios for Protein Stabilization by PEG. Journal of Physical Chemistry B, 2014, 118, 8388-8395.	2.6	41
92	In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin. Proteins: Structure, Function and Bioinformatics, 2008, 71, 24-34.	2.6	40
93	Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields. Biopolymers, 2016, 105, 752-763.	2.4	40
94	Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore. Nucleic Acids Research, 2009, 37, 4170-4179.	14.5	39
95	Molecular mechanism of DNA association with single-stranded DNA binding protein. Nucleic Acids Research, 2017, 45, 12125-12139.	14.5	39
96	Refined Parameterization of Nonbonded Interactions Improves Conformational Sampling and Kinetics of Protein Folding Simulations. Journal of Physical Chemistry Letters, 2016, 7, 3812-3818.	4.6	38
97	The Manipulation of the Internal Hydrophobicity of FraC Nanopores Augments Peptide Capture and Recognition. ACS Nano, 2021, 15, 9600-9613.	14.6	37
98	Scaling of the Euler Characteristic, Surface Area, and Curvatures in the Phase Separating or Ordering Systems. Physical Review Letters, 2001, 86, 240-243.	7.8	35
99	Protein unfolding by SDS: the microscopic mechanisms and the properties of the SDS-protein assembly. Nanoscale, 2020, 12, 5422-5434.	5.6	34
100	Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces. Advanced Functional Materials, 2011, 21, 1040-1050.	14.9	33
101	Synthetic Macrocycle Nanopore for Potassium-Selective Transmembrane Transport. Journal of the American Chemical Society, 2021, 143, 15975-15983.	13.7	33
102	Microscopic Perspective on the Adsorption Isotherm of a Heterogeneous Surface. Journal of Physical Chemistry Letters, 2011, 2, 1804-1807.	4.6	32
103	Large Scale Simulation of Protein Mechanics and Function. Advances in Protein Chemistry, 2003, 66, 195-247.	4.4	31
104	Dynamics of a Molecular Plug Docked onto a Solid-State Nanopore. Journal of Physical Chemistry Letters, 2018, 9, 4686-4694.	4.6	31
105	A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore. Communications in Computational Physics, 2014, 15, 93-125.	1.7	30
106	Dynamic Interactions between Lipid-Tethered DNA and Phospholipid Membranes. Langmuir, 2018, 34, 15084-15092.	3.5	30
107	Water-Compression Gating of Nanopore Transport. Physical Review Letters, 2018, 120, 268101.	7.8	30
108	DNA sequence-dependent ionic currents in ultra-small solid-state nanopores. Nanoscale, 2016, 8, 9600-9613.	5.6	29

#	Article	IF	CITATIONS
109	Electrical unfolding of cytochrome <i>c</i> during translocation through a nanopore constriction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
110	Computer Modeling in Biotechnology. Methods in Molecular Biology, 2008, 474, 181-234.	0.9	26
111	Hydrophobic Interactions between DNA Duplexes and Synthetic and Biological Membranes. Journal of the American Chemical Society, 2021, 143, 8305-8313.	13.7	26
112	Modeling Pressure-Driven Transport of Proteins Through a Nanochannel. IEEE Nanotechnology Magazine, 2011, 10, 75-82.	2.0	25
113	High-Fidelity Capture, Threading, and Infinite-Depth Sequencing of Single DNA Molecules with a Double-Nanopore System. ACS Nano, 2020, 14, 15566-15576.	14.6	24
114	Modeling Nanopores for Sequencing DNA. Methods in Molecular Biology, 2011, 749, 317-358.	0.9	24
115	Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization. ACS Nano, 2017, 11, 11931-11945.	14.6	23
116	Hydroxymethyluracil modifications enhance the flexibility and hydrophilicity of double-stranded DNA. Nucleic Acids Research, 2016, 44, 2085-2092.	14.5	22
117	Translocation of DNA through Ultrathin Nanoslits. Advanced Materials, 2021, 33, e2007682.	21.0	22
118	DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity. Nano Letters, 2021, 21, 8634-8641.	9.1	22
119	Modeling thermophoretic effects in solid-state nanopores. Journal of Computational Electronics, 2014, 13, 826-838.	2.5	21
120	Molecular mechanics of DNA bricks: <i>in situ</i> structure, mechanical properties and ionic conductivity. New Journal of Physics, 2016, 18, 055012.	2.9	21
121	Structure, Dynamics, and Ion Conductance of the Phospholamban Pentamer. Biophysical Journal, 2009, 96, 4853-4865.	0.5	20
122	Quantification of Membrane Protein-Detergent Complex Interactions. Journal of Physical Chemistry B, 2017, 121, 10228-10241.	2.6	20
123	Atoms-to-microns model for small solute transport through sticky nanochannels. Lab on A Chip, 2011, 11, 3766.	6.0	19
124	Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9391-9396.	7.1	19
125	Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors. Journal of the American Chemical Society, 2020, 142, 1680-1685.	13.7	19
126	Determining the In-Plane Orientation and Binding Mode of Single Fluorescent Dyes in DNA Origami Structures. ACS Nano, 2021, 15, 5109-5117.	14.6	18

#	Article	IF	CITATIONS
127	Expanding the Molecular Alphabet of DNA-Based Data Storage Systems with Neural Network Nanopore Readout Processing. Nano Letters, 2022, 22, 1905-1914.	9.1	18
128	Optimization of the Molecular Dynamics Method for Simulations of DNA and Ion Transport Through Biological Nanopores. Methods in Molecular Biology, 2012, 870, 165-186.	0.9	17
129	The effect of calcium on the conformation of cobalamin transporter BtuB. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1153-1162.	2.6	16
130	Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate. ACS Nano, 2019, 13, 2398-2409.	14.6	16
131	Molecular Transport across the Ionic Liquid–Aqueous Electrolyte Interface in a MoS ₂ Nanopore. ACS Applied Materials & Interfaces, 2020, 12, 26624-26634.	8.0	16
132	Structure Refinement of the OpcA Adhesin Using Molecular Dynamics. Biophysical Journal, 2007, 93, 3058-3069.	0.5	15
133	Effect of Temperature and Hydrophilic Ratio on the Structure of Poly(<i>N</i> -vinylcaprolactam)- <i>block</i> -poly(dimethylsiloxane)- <i>block</i> -poly(<i>N</i> -vinylcaprolactam) Polymersomes. ACS Applied Polymer Materials, 2019, 1, 722-736.	4.4	15
134	A tetrahedral DNA nanorobot with conformational change in response to molecular trigger. Nanoscale, 2021, 13, 15552-15559.	5.6	15
135	Toward detection of DNAâ€bound proteins using solidâ€state nanopores: Insights from computer simulations. Electrophoresis, 2012, 33, 3466-3479.	2.4	14
136	Modulation of Molecular Flux Using a Graphene Nanopore Capacitor. Journal of Physical Chemistry B, 2017, 121, 3724-3733.	2.6	14
137	A nanoscale reciprocating rotary mechanism with coordinated mobility control. Nature Communications, 2021, 12, 7138.	12.8	14
138	Tailoring Interleaflet Lipid Transfer with a DNA-based Synthetic Enzyme. Nano Letters, 2020, 20, 4306-4311.	9.1	13
139	Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. Nano Letters, 2022, 22, 4831-4838.	9.1	12
140	Polyhydrazideâ€Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angewandte Chemie, 2020, 132, 4836-4843.	2.0	11
141	DNA sequence and methylation prescribe the inside-out conformational dynamics and bending energetics of DNA minicircles. Nucleic Acids Research, 2021, 49, 11459-11475.	14.5	11
142	Multi-resolution simulation of DNA transport through large synthetic nanostructures. Physical Chemistry Chemical Physics, 2022, 24, 2706-2716.	2.8	10
143	Selective Permeability of Truncated Aquaporin 1 in Silico. ACS Biomaterials Science and Engineering, 2017, 3, 342-348.	5.2	9
144	Single molecule analysis of structural fluctuations in DNA nanostructures. Nanoscale, 2019, 11, 18475-18482.	5.6	9

#	Article	IF	CITATIONS
145	Nanoscale Ion Pump Derived from a Biological Water Channel. Journal of Physical Chemistry B, 2017, 121, 7899-7906.	2.6	8
146	Discrimination of RNA fiber structures using solid-state nanopores. Nanoscale, 2022, 14, 6866-6875.	5.6	8
147	Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. Advanced Theory and Simulations, 2019, 2, 1800191.	2.8	7
148	A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems. Methods in Molecular Biology, 2018, 1811, 209-229.	0.9	6
149	The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study. PLoS ONE, 2016, 11, e0152002.	2.5	6
150	Characterization of the Lipid Structure and Fluidity of Lipid Membranes on Epitaxial Graphene and Their Correlation to Graphene Features. Langmuir, 2019, 35, 4726-4735.	3.5	5
151	Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure. Nano Letters, 2021, 21, 9789-9796.	9.1	5
152	Engineering Biological Nanopore MspA for Sequencing DNA. Biophysical Journal, 2011, 100, 168a.	0.5	2
153	Nanopore Sequencing: Graphene Nanopores for Protein Sequencing (Adv. Funct. Mater. 27/2016). Advanced Functional Materials, 2016, 26, 4829-4829.	14.9	2
154	Single molecule force measurements: Insights from molecular simulations. Physics of Life Reviews, 2010, 7, 353-354.	2.8	1
155	Netting proteins, one at a time. Nature Nanotechnology, 2021, 16, 1178-1179.	31.5	1
156	Nanopore Force Spectroscopy: Insights from Molecular Dynamics Simulations. , 2011, , 335-356.		1
157	Single-molecule biophysics experiments in silico: Toward a physical model of a replisome. IScience, 2022, 25, 104264.	4.1	1
158	Third Generation DNA Sequencing with a Nanopore. , 2011, , 287-311.		0
159	Modeling the Interface between Biological and SyntheticComponents in Hybrid Nanosystems. , 2011, , 43-60.		0