Julie A Maupin-Furlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528771/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Complete Genome Sequence of Haloferax volcanii DS2, a Model Archaeon. PLoS ONE, 2010, 5, e9605.	2.5	234
2	Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature, 2010, 463, 54-60.	27.8	170
3	LccA, an Archaeal Laccase Secreted as a Highly Stable Glycoprotein into the Extracellular Medium by <i>Haloferax volcanii</i> . Applied and Environmental Microbiology, 2010, 76, 733-743.	3.1	117
4	Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. Journal of Bacteriology, 1995, 177, 4851-4856.	2.2	104
5	Proteasomes and protein conjugation across domains of life. Nature Reviews Microbiology, 2012, 10, 100-111.	28.6	98
6	Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli. Journal of Bacteriology, 1995, 177, 4857-4864.	2.2	85
7	Analysis of Proteasome-Dependent Proteolysis in Haloferax volcanii Cells, Using Short-Lived Green Fluorescent Proteins. Applied and Environmental Microbiology, 2004, 70, 7530-7538.	3.1	83
8	E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4417-4422.	7.1	83
9	Biochemical and Physical Properties of the Methanococcus jannaschii 20S Proteasome and PAN, a Homolog of the ATPase (Rpt) Subunits of the Eucaryal 26S Proteasome. Journal of Bacteriology, 2000, 182, 1680-1692.	2.2	82
10	Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control. Cell, 2019, 178, 76-90.e22.	28.9	81
11	A Proteasome from the Methanogenic Archaeon Methanosarcina thermophila. Journal of Biological Chemistry, 1995, 270, 28617-28622.	3.4	77
12	Haloarchaeal proteases and proteolytic systems. FEMS Microbiology Reviews, 2006, 30, 17-35.	8.6	69
13	Cloning and Characterization of the Zymobacter palmae Pyruvate Decarboxylase Gene (pdc) and Comparison to Bacterial Homologues. Applied and Environmental Microbiology, 2002, 68, 2869-2876.	3.1	63
14	Trizol-based method for sample preparation and isoelectric focusing of halophilic proteins. Analytical Biochemistry, 2006, 351, 254-259.	2.4	62
15	Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadii (Nep). Extremophiles, 2008, 12, 677-687.	2.3	60
16	Biochemical Characterization of the 20S Proteasome from the Methanoarchaeon <i>Methanosarcina thermophila</i> . Journal of Bacteriology, 1998, 180, 1480-1487.	2.2	60
17	Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Archives of Microbiology, 2001, 176, 443-451.	2.2	57
18	Halophilic 20S Proteasomes of the Archaeon <i>Haloferax volcanii</i> : Purification, Characterization, and Gene Sequence Analysis. Journal of Bacteriology, 1999, 181, 5814-5824.	2.2	57

#	Article	IF	CITATIONS
19	Differential Regulation of the PanA and PanB Proteasome-Activating Nucleotidase and 20S Proteasomal Proteins of the Haloarchaeon Haloferax volcanii. Journal of Bacteriology, 2004, 186, 7763-7772.	2.2	56
20	Proteasomal Components Required for Cell Growth and Stress Responses in the Haloarchaeon <i>Haloferax volcanii</i> . Journal of Bacteriology, 2008, 190, 8096-8105.	2.2	55
21	Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila. Journal of Bacteriology, 1996, 178, 6849-6856.	2.2	51
22	Shotgun Proteomics of the Haloarchaeon Haloferax volcanii. Journal of Proteome Research, 2008, 7, 5033-5039.	3.7	51
23	Proteasomes from Structure to Function: Perspectives from Archaea. Current Topics in Developmental Biology, 2006, 75, 125-169.	2.2	50
24	Subunit Topology of Two 20S Proteasomes from Haloferax volcanii. Journal of Bacteriology, 2003, 185, 165-174.	2.2	49
25	Prokaryotic Ubiquitin-Like Protein Modification. Annual Review of Microbiology, 2014, 68, 155-175.	7.3	47
26	Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA. Microbiology (United Kingdom), 2008, 154, 1436-1443.	1.8	45
27	Construction and expression of an ethanol production operon in Gram-positive bacteria. Microbiology (United Kingdom), 2005, 151, 4023-4031.	1.8	43
28	Ubiquitin-like proteins and their roles in archaea. Trends in Microbiology, 2013, 21, 31-38.	7.7	43
29	The N-Terminal Penultimate Residue of 20S Proteasome α1 Influences its N α Acetylation and Protein Levels as Well as Growth Rate and Stress Responses of Haloferax volcanii. Journal of Bacteriology, 2009, 191, 3794-3803.	2.2	40
30	The Archaeal Proteome Project advances knowledge about archaeal cell biology through comprehensive proteomics. Nature Communications, 2020, 11, 3145.	12.8	40
31	Proteasomes in the archaea: from structure to function. Frontiers in Bioscience - Landmark, 2000, 5, d837.	3.0	40
32	Microbial diversity of the hypersaline Sidi Ameur and Himalatt Salt Lakes of the Algerian Sahara. Journal of Arid Environments, 2011, 75, 909-916.	2.4	39
33	Archaeal <scp>JAB</scp> 1/ <scp>MPN</scp> / <scp>MOV</scp> 34 metalloenzyme (<scp>HvJAMM</scp> 1) cleaves ubiquitinâ€like small archaeal modifier proteins (<scp>SAMP</scp> s) from proteinâ€conjugates. Molecular Microbiology, 2012, 86, 971-987.	2.5	39
34	Archaeal proteasomes and other regulatory proteases. Current Opinion in Microbiology, 2005, 8, 720-728.	5.1	38
35	Genetic and Proteomic Analyses of a Proteasome-Activating Nucleotidase A Mutant of the Haloarchaeon <i>Haloferax volcanii</i> . Journal of Bacteriology, 2008, 190, 193-205.	2.2	37
36	Glycerol-Mediated Repression of Glucose Metabolism and Glycerol Kinase as the Sole Route of Glycerol Catabolism in the Haloarchaeon <i>Haloferax volcanii</i> . Journal of Bacteriology, 2009, 191, 4307-4315.	2.2	37

#	Article	IF	CITATIONS
37	Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. Journal of Bacteriology, 1996, 178, 340-346.	2.2	36
38	A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. BMC Genomics, 2012, 13, 165.	2.8	36
39	Haloferax volcanii PitA: an example of functional interaction between the Pfam chlorite dismutase and antibiotic biosynthesis monooxygenase families?. Bioinformatics, 2006, 22, 671-675.	4.1	35
40	Post-translation modification in Archaea: lessons from <i>Haloferax volcanii</i> and other haloarchaea. FEMS Microbiology Reviews, 2013, 37, 583-606.	8.6	34
41	Production of the Gram-positive Sarcina ventriculi pyruvate decarboxylase in Escherichia coli The GenBank accession number for the sequence reported in this paper is AF354297 Microbiology (United) Tj ETQq1	1.0 .7843	1944rgBT /Ov
42	GlpR Represses Fructose and Glucose Metabolic Enzymes at the Level of Transcription in the Haloarchaeon <i>Haloferax volcanii</i> . Journal of Bacteriology, 2010, 192, 6251-6260.	2.2	33
43	Archaeal Tuc1/Ncs6 Homolog Required for Wobble Uridine tRNA Thiolation Is Associated with Ubiquitin-Proteasome, Translation, and RNA Processing System Homologs. PLoS ONE, 2014, 9, e99104.	2.5	32
44	Improvement of two-dimensional gel electrophoresis proteome maps of the haloarchaeonHaloferax volcanii. Proteomics, 2005, 5, 354-359.	2.2	30
45	Proteasomes: perspectives from the archaea. Frontiers in Bioscience - Landmark, 2004, 9, 1743.	3.0	29
46	Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea. MBio, 2016, 7, .	4.1	28
47	Posttranslational Modification of the 20S Proteasomal Proteins of the Archaeon Haloferax volcanii. Journal of Bacteriology, 2006, 188, 7521-7530.	2.2	27
48	Activity and Transcriptional Regulation of Bacterial Protein-Like Glycerol-3-Phosphate Dehydrogenase of the Haloarchaea in Haloferax volcanii. Journal of Bacteriology, 2011, 193, 4469-4476.	2.2	27
49	Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon <i>Haloferax volcanii</i> . Archaea, 2010, 2010, 1-10.	2.3	25
50	Archaeal Ubiquitin-like SAMP3 is Isopeptide-linked to Proteins via a UbaA-dependent Mechanism. Molecular and Cellular Proteomics, 2014, 13, 220-239.	3.8	25
51	Prokaryotic Proteasomes: Nanocompartments of Degradation. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 321-334.	1.0	24
52	Functional Proteomic Discovery of Slr0110 as a Central Regulator of Carbohydrate Metabolism in Synechocystis Species PCC6803. Molecular and Cellular Proteomics, 2014, 13, 204-219.	3.8	22
53	Recombinant production ofZymomonas mobilispyruvate decarboxylase in the haloarchaeonHaloferax volcanii. Archaea, 2005, 1, 327-334.	2.3	21
54	Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitinâ€like proteins of Archaea. FEBS Journal, 2016, 283, 3567-3586.	4.7	21

#	Article	IF	CITATIONS
55	Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environmental Microbiology, 2018, 20, 385-401.	3.8	21
56	Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in <i>Archaea</i> . MBio, 2017, 8, .	4.1	20
57	Redox and Thiols in Archaea. Antioxidants, 2020, 9, 381.	5.1	20
58	Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnology and Bioengineering, 2021, 118, 1066-1090.	3.3	19
59	Effect of proteasome inhibitor clasto-lactacystin-β-lactone on the proteome of the haloarchaeon Haloferax volcanii. Microbiology (United Kingdom), 2007, 153, 2271-2280.	1.8	18
60	Nitrogen regulation of protein–protein interactions and transcript levels of GlnK <scp>PII</scp> regulator and AmtB ammonium transporter homologs in Archaea. MicrobiologyOpen, 2013, 2, 826-840.	3.0	18
61	Methionine Sulfoxide Reductases of Archaea. Antioxidants, 2018, 7, 124.	5.1	17
62	Chemical crossâ€linking, mass spectrometry, and in silico modeling of proteasomal 20 <scp>S</scp> core particles of the haloarchaeon <i><scp>H</scp>aloferax volcanii</i> . Proteomics, 2012, 12, 1806-1814.	2.2	16
63	Proteome targets of ubiquitinâ€like samp1ylation are associated with sulfur metabolism and oxidative stress in <i>Haloferax volcanii</i> . Proteomics, 2016, 16, 1100-1110.	2.2	16
64	Structural Insight into Ubiquitin-Like Protein Recognition and Oligomeric States of JAMM/MPN+ Proteases. Structure, 2017, 25, 823-833.e6.	3.3	16
65	Extreme challenges and advances in archaeal proteomics. Current Opinion in Microbiology, 2012, 15, 351-356.	5.1	15
66	A Cobalamin Activity-Based Probe Enables Microbial Cell Growth and Finds New Cobalamin-Protein Interactions across Domains. Applied and Environmental Microbiology, 2018, 84, .	3.1	15
67	Bacterial effectors mimicking ubiquitin-proteasome pathway tweak plant immunity. Microbiological Research, 2021, 250, 126810.	5.3	15
68	Hydrophobic carboxy-terminal residues dramatically reduce protein levels in the haloarchaeon Haloferax volcanii. Microbiology (United Kingdom), 2010, 156, 248-255.	1.8	14
69	Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii. BMC Microbiology, 2014, 14, 260.	3.3	14
70	Ubiquitin-Like Protein SAMP1 and JAMM/MPN+ Metalloprotease HvJAMM1 Constitute a System for Reversible Regulation of Metabolic Enzyme Activity in Archaea. PLoS ONE, 2015, 10, e0128399.	2.5	14
71	GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii. Journal of Bacteriology, 2018, 200, .	2.2	14
72	Archaeal Proteasomes and Sampylation. Sub-Cellular Biochemistry, 2013, 66, 297-327.	2.4	14

#	Article	IF	CITATIONS
73	Archaeal proteasomes: Proteolytic nanocompartments of the cell. Advances in Applied Microbiology, 2001, 50, 279-338.	2.4	13
74	Enhanced archaeal laccase production in recombinant <i>Escherichia coli</i> by modification of N-terminal propeptide and twin arginine translocation motifs. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1523-1532.	3.0	13
75	Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents. Applied and Environmental Microbiology, 2016, 82, 538-548.	3.1	13
76	Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea. , 0, , .		13
77	ThiN as a Versatile Domain of Transcriptional Repressors and Catalytic Enzymes of Thiamine Biosynthesis. Journal of Bacteriology, 2017, 199, .	2.2	11
78	Structural and biochemical properties of an extreme â€~salt-loving' proteasome activating nucleotidase from the archaeon Haloferax volcanii. Extremophiles, 2014, 18, 283-293.	2.3	10
79	Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain. Free Radical Biology and Medicine, 2018, 129, 600-607.	2.9	10
80	Modification of the host ubiquitome by bacterial enzymes. Microbiological Research, 2020, 235, 126429.	5.3	10
81	Stabilization of an archaeal DNA-sliding clamp protein, PCNA, by proteasome-activating nucleotidase gene knockout inHaloferax volcanii. FEMS Microbiology Letters, 2009, 294, 32-36.	1.8	8
82	Crystal structure of the ubiquitinâ€like small archaeal modifier protein 2 from <i>Haloferax volcanii</i> . Protein Science, 2013, 22, 1206-1217.	7.6	8
83	Transcriptional linkage of Haloferax volcanii proteasomal genes with non-proteasomal gene neighbours including RNase P, MOSC domain and SAM-methyltransferase homologues. Microbiology (United Kingdom), 2007, 153, 3009-3022.	1.8	7
84	Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerging Topics in Life Sciences, 2018, 2, 561-580.	2.6	7
85	The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Research, 2022, 50, 4601-4615.	14.5	7
86	The Antioxidant Enzyme Methionine Sulfoxide Reductase A (MsrA) Interacts with Jab1/CSN5 and Regulates Its Function. Antioxidants, 2020, 9, 452.	5.1	6
87	Archaeal proteasomes:. Metabolic Engineering, 2003, 5, 151-163.	7.0	5
88	Molecular Factors of Hypochlorite Tolerance in the Hypersaline Archaeon Haloferax volcanii. Genes, 2018, 9, 562.	2.4	5
89	Gene Expression of Haloferax volcanii on Intermediate and Abundant Sources of Fixed Nitrogen. International Journal of Molecular Sciences, 2019, 20, 4784.	4.1	4
90	Proteasomes in the archaea from structure to function. Frontiers in Bioscience - Landmark, 2000, 5, d837-865.	3.0	3

#	Article	IF	CITATIONS
91	Rhodanese-Like Domain Protein UbaC and Its Role in Ubiquitin-Like Protein Modification and Sulfur Mobilization in Archaea. Journal of Bacteriology, 2019, 201, .	2.2	3
92	Insights through Genetics of Halophilic Microorganisms and Their Viruses. Genes, 2020, 11, 388.	2.4	3
93	Expression and tandem affinity purification of 20S proteasomes and other multisubunit complexes in Haloferax volcanii. Methods in Enzymology, 2021, 659, 315-326.	1.0	3
94	High-level synthesis and secretion of laccase, a metalloenzyme biocatalyst, by the halophilic archaeon Haloferax volcanii. Methods in Enzymology, 2021, 659, 297-313.	1.0	3
95	Analysis of genes in the pathway for the fermentation of acetate to methane by Methanosarcina thermophila. , 1996, , 64-71.		2
96	Haloarchaeal proteases and proteolytic systems. FEMS Microbiology Reviews, 2006, 30, 649-649.	8.6	1
97	Proteasomes and Other Nanocompartmentalized Proteases of Archaea. Microbiology Monographs, 2006, , 23-46.	0.6	1
98	Archaeal Protein Biogenesis: Posttranslational Modification and Degradation. Archaea, 2010, 2010, 1-2.	2.3	1
99	Activity and Transcriptional Regulation of Bacterial Protein-Like Glycerol-3-Phosphate Dehydrogenase of the Haloarchaea in Haloferax volcanii. Journal of Bacteriology, 2011, 193, 6110-6110.	2.2	1
100	Assays for ubiquitin-like protein ligation and proteasome function in archaea. Methods in Enzymology, 2019, 619, 161-178.	1.0	1
101	In vitro Analysis of Ubiquitin-like Protein Modification in Archaea. Bio-protocol, 2018, 8, .	0.4	1
102	Chase Assay of Protein Stability in Haloferax volcanii. Bio-protocol, 2017, 7, .	0.4	1
103	Stepping up protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 350-352.	7.1	0
104	Putting phage to work in deubiquitinase ligand discovery. Journal of Biological Chemistry, 2019, 294, 437-438.	3.4	0
105	Characterization of an archaeal ubiquitinâ€like protein SAMP1. FASEB Journal, 2013, 27, 782.8.	0.5	0
106	Biochemical Characterization of the 20S Proteasome from the Methanoarchaeon <i>Methanosarcina thermophila</i> . Journal of Bacteriology, 1998, 180, 3017-3017.	2.2	0
107	RPT. , 2018, , 4756-4762.		0
108	Cdc48a AAAâ€ATPase and its association with ubiquitinâ€like SAMP1 and DNA repair in Archaea. FASEB Journal, 2018, 32, 786.10.	0.5	0

#	Article	IF	CITATIONS
109	RNA helicase homolog and its association with the JAMM2 metalloprotease required for targeted protein turnover in Archaea. FASEB Journal, 2019, 33, 631.36.	0.5	0
110	Determining the association of the TrmBâ€like protein OxsR to chromatin binding and oxidative stress in Haloferax volcanii. FASEB Journal, 2019, 33, 777.17.	0.5	0
111	Lysine acetylation during oxidative stress response in the halophilic archaeon <i>Haloferax volcanii</i> . FASEB Journal, 2022, 36, .	0.5	Ο