Françoise Hullin-Matsuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5287564/publications.pdf

Version: 2024-02-01

430874 434195 1,060 32 18 31 citations h-index g-index papers 33 33 33 1917 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PMP2/FABP8 induces PI(4,5)P2-dependent transbilayer reorganization of sphingomyelin in the plasma membrane. Cell Reports, 2021, 37, 109935.	6.4	22
2	Bis(monoacylglycero)phosphate, a new lipid signature of endosome-derived extracellular vesicles. Biochimie, 2020, 178, 26-38.	2.6	24
3	Bis(monoacylglycero)phosphate, an important actor in the host endocytic machinery hijacked by SARS-CoV-2 and related viruses. Biochimie, 2020, 179, 247-256.	2.6	21
4	Bis(monoacylglycero)phosphate regulates oxysterol binding protein-related protein 11 dependent sterol trafficking. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1247-1257.	2.4	10
5	Formation of tubules and helical ribbons by ceramide phosphoethanolamine-containing membranes. Scientific Reports, 2019, 9, 5812.	3.3	12
6	InÂvitro oxidized HDL and HDL from type 2 diabetes patients have reduced ability to efflux oxysterols from THP-1 macrophages. Biochimie, 2018, 153, 232-237.	2.6	11
7	Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin. Seminars in Cell and Developmental Biology, 2018, 73, 188-198.	5.0	30
8	Protein probes to visualize sphingomyelin and ceramide phosphoethanolamine. Chemistry and Physics of Lipids, 2018, 216, 132-141.	3.2	20
9	A novel sphingomyelin/cholesterol domainâ€specific probe reveals the dynamics of the membrane domains during virus release and in Niemannâ€Pick type C. FASEB Journal, 2017, 31, 1301-1322.	0.5	34
10	Plasma Membrane Origin of the Steroidogenic Pool of Cholesterol Used in Hormone-induced Acute Steroid Formation in Leydig Cells. Journal of Biological Chemistry, 2016, 291, 26109-26125.	3.4	41
11	Stimulatory effects of combined endocrine disruptors on MA-10 Leydig cell steroid production and lipid homeostasis. Toxicology, 2016, 355-356, 21-30.	4.2	25
12	Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes. Molecular Biology of the Cell, 2016, 27, 3293-3304.	2.1	21
13	Probing phosphoethanolamine-containing lipids in membranes with duramycin/cinnamycin and aegerolysin proteins. Biochimie, 2016, 130, 81-90.	2.6	25
14	Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 576-592.	2.6	29
15	Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB Journal, 2015, 29, 477-493.	0.5	76
16	Regulation of the transbilayer movement of diacylglycerol in the plasma membrane. Biochimie, 2014, 107, 43-50.	2.6	15
17	Lipid compartmentalization in the endosome system. Seminars in Cell and Developmental Biology, 2014, 31, 48-56.	5.0	72
18	Sphingomyelin regulates the transbilayer movement of diacylglycerol in the plasma membrane of Madinâ€Darby canine kidney cells. FASEB Journal, 2013, 27, 3284-3297.	0.5	24

#	Article	IF	CITATIONS
19	A Role for Sphingomyelin-Rich Lipid Domains in the Accumulation of Phosphatidylinositol-4,5-Bisphosphate to the Cleavage Furrow during Cytokinesis. Molecular and Cellular Biology, 2012, 32, 1396-1407.	2.3	125
20	Limonoid Compounds Inhibit Sphingomyelin Biosynthesis by Preventing CERT Protein-dependent Extraction of Ceramides from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2012, 287, 24397-24411.	3.4	29
21	On the origin of the 1602 cm ^{–1} Raman band of yeasts; contribution of ergosterol. Journal of Biophotonics, 2012, 5, 724-728.	2.3	34
22	Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). Journal of Lipid Research, 2011, 52, 1294-1302.	4.2	12
23	Selective decrease of bis(monoacylglycero)phosphate content in macrophages by high supplementation with docosahexaenoic acid. Journal of Lipid Research, 2009, 50, 243-255.	4.2	38
24	Novel Lipogenic Enzyme ELOVL7 Is Involved in Prostate Cancer Growth through Saturated Long-Chain Fatty Acid Metabolism. Cancer Research, 2009, 69, 8133-8140.	0.9	170
25	Imaging Lipid Membrane Domains with Lipid-Specific Probes. , 2009, 580, 203-220.		6
26	De novo biosynthesis of the late endosome lipid, bis(monoacylglycero)phosphate. Journal of Lipid Research, 2007, 48, 1997-2008.	4.2	71
27	Selective incorporation of docosahexaenoic acid into lysobisphosphatidic acid in cultured THP-1 macrophages. Lipids, 2006, 41, 189-196.	1.7	19
28	Enterophilin-1 Interacts with Focal Adhesion Kinase and Decreases \hat{l}^21 Integrins in Intestinal Caco-2 Cells. Journal of Biological Chemistry, 2004, 279, 9270-9277.	3.4	3
29	Enterophilin-1, a New Partner of Sorting Nexin 1, Decreases Cell Surface Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2003, 278, 21155-21161.	3.4	11
30	Guinea Pig Phospholipase B, Identification of the Catalytic Serine and the Proregion Involved in Its Processing and Enzymatic Activity. Journal of Biological Chemistry, 2002, 277, 44093-44099.	3.4	10
31	Enterophilins, a New Family of Leucine Zipper Proteins Bearing a B30.2 Domain and Associated with Enterocyte Differentiation. Journal of Biological Chemistry, 2001, 276, 18352-18360.	3.4	10
32	Ca2+-independent cytosolic phospholipase A in HL-60 cells differentiating to granulocytes. FEBS Letters, 1997, 419, 117-120.	2.8	4