
Alexandre Presas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5287164/publications.pdf Version: 2024-02-01

ALEXANDE PRESAS

#	Article	IF	CITATIONS
1	On the use of Vibrational Hill Charts for improved condition monitoring and diagnosis of hydraulic turbines. Structural Health Monitoring, 2022, 21, 2547-2568.	7.5	3
2	Influence of rotation on the modal characteristics of a bulb turbine unit rotor. Renewable Energy, 2022, 187, 887-895.	8.9	12
3	Failure investigation of a solar tracker due to wind-induced torsional galloping. Engineering Failure Analysis, 2022, 135, 106137.	4.0	18
4	Analysis of the Mode Shapes of Kaplan Runners. Applied Sciences (Switzerland), 2022, 12, 6708.	2.5	1
5	Improved damage detection in Pelton turbines using optimized condition indicators and data-driven techniques. Structural Health Monitoring, 2021, 20, 3239-3251.	7.5	6
6	On the quantification of local power densities in a new vibration bioreactor. PLoS ONE, 2021, 16, e0245768.	2.5	3
7	On the use of neural networks for dynamic stress prediction in Francis turbines by means of stationary sensors. Renewable Energy, 2021, 170, 652-660.	8.9	9
8	Selection and Optimization of Sensors for Monitoring of Francis Turbines. IOP Conference Series: Earth and Environmental Science, 2021, 774, 012028.	0.3	0
9	Strain prediction in Francis runners by means of stationary sensors. IOP Conference Series: Earth and Environmental Science, 2021, 774, 012084.	0.3	1
10	Implant resonance and the mechanostat theory: Applications of therapeutic ultrasound for porous metallic scaffolds. Materials Science and Engineering C, 2021, 125, 112070.	7.3	2
11	Increasing the operating range and energy production in Francis turbines by an early detection of the overload instability. Measurement: Journal of the International Measurement Confederation, 2021, 181, 109580.	5.0	10
12	Resonance vibration interventions in the femur: Experimental-numerical modelling approaches. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104850.	3.1	0
13	Synchronous condenser operation in Francis turbines: Effects in the runner stress and machine vibration. Renewable Energy, 2020, 146, 890-900.	8.9	3
14	Operating conditions leading to crack propagation in turbine blades of tidal barrages. Influence of head and operating mode. Engineering Failure Analysis, 2020, 108, 104254.	4.0	6
15	Experimental and numerical investigation on the influence of a large crack on the modal behaviour of a Kaplan turbine blade. Engineering Failure Analysis, 2020, 109, 104389.	4.0	18
16	Transposition of the mechanical behavior from model to prototype of Francis turbines. Renewable Energy, 2020, 152, 1011-1023.	8.9	14
17	Response of Saos-2 osteoblast-like cells to kilohertz-resonance excitation in porous metallic scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103726.	3.1	5
18	On the use of artificial neural networks for condition monitoring of pump-turbines with extended operation. Measurement: Journal of the International Measurement Confederation, 2020, 163, 107952	5.0	24

ALEXANDRE PRESAS

#	Article	IF	CITATIONS
19	Dynamic response of Pelton runners: Numerical and experimental analysis in prototypes. Renewable Energy, 2020, 157, 116-129.	8.9	8
20	Detection of erosive cavitation on hydraulic turbines through demodulation analysis. IOP Conference Series: Earth and Environmental Science, 2019, 240, 062048.	0.3	4
21	Detection of Hydraulic Phenomena in Francis Turbines with Different Sensors. Sensors, 2019, 19, 4053.	3.8	18
22	Influence of the hydrodynamic damping on the dynamic response of Francis turbine runners. Journal of Fluids and Structures, 2019, 90, 71-89.	3.4	7
23	Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion. Energies, 2019, 12, 939.	3.1	11
24	Experimental-Numerical Design and Evaluation of a Vibration Bioreactor Using Piezoelectric Patches. Sensors, 2019, 19, 436.	3.8	6
25	Experimental Measurements of the Natural Frequencies and Mode Shapes of Rotating Disk-Blades-Disk Assemblies from the Stationary Frame. Applied Sciences (Switzerland), 2019, 9, 3864.	2.5	15
26	Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends. Renewable and Sustainable Energy Reviews, 2019, 102, 96-110.	16.4	42
27	Cavitation Effects on the Structural Resonance of Hydraulic Turbines: Failure Analysis in a Real Francis Turbine Runner. Energies, 2018, 11, 2320.	3.1	13
28	Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines. Sensors, 2018, 18, 1038.	3.8	13
29	Transmission of High Frequency Vibrations in Rotating Systems. Application to Cavitation Detection in Hydraulic Turbines. Applied Sciences (Switzerland), 2018, 8, 451.	2.5	21
30	Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges. Sensors, 2018, 18, 174.	3.8	24
31	A Review of PZT Patches Applications in Submerged Systems. Sensors, 2018, 18, 2251.	3.8	31
32	Experimental Study of a Vibrating Disk Submerged in a Fluid-Filled Tank and Confined With a Nonrigid Cover. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.6	15
33	Overview of the experimental tests in prototype. Journal of Physics: Conference Series, 2017, 813, 012037.	0.4	6
34	Failure investigation of a Pelton turbine runner. Engineering Failure Analysis, 2017, 81, 234-244.	4.0	26
35	Detection and analysis of part load and full load instabilities in a real Francis turbine prototype. Journal of Physics: Conference Series, 2017, 813, 012038.	0.4	13
36	Numerical study on the influence of acoustic natural frequencies on the dynamic behaviour of submerged and confined disk-like structures. Journal of Fluids and Structures, 2017, 73, 53-69.	3.4	27

ALEXANDRE PRESAS

#	Article	IF	CITATIONS
37	Dynamic response of the MICA runner. Experiment and simulation. Journal of Physics: Conference Series, 2017, 813, 012036.	0.4	3
38	Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patchesâ€. Sensors, 2017, 17, 660.	3.8	40
39	On the Use of PZT-Patches as Exciters in Modal Analysis: Application to Submerged Structures. Proceedings (mdpi), 2017, 1, 32.	0.2	3
40	Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities. Energies, 2017, 10, 2124.	3.1	62
41	Extension of Operating Range in Pump-Turbines. Influence of Head and Load. Energies, 2017, 10, 2178.	3.1	28
42	On the Capability of Structural–Acoustical Fluid–Structure Interaction Simulations to Predict Natural Frequencies of Rotating Disklike Structures Submerged in a Heavy Fluid. Journal of Vibration and Acoustics, Transactions of the ASME, 2016, 138, .	1.6	14
43	Influence of the boundary conditions on the natural frequencies of a Francis turbine. IOP Conference Series: Earth and Environmental Science, 2016, 49, 072004.	0.3	12
44	Natural frequencies of rotating disk-like structures submerged viewed from the stationary frame. IOP Conference Series: Earth and Environmental Science, 2016, 49, 082023.	0.3	3
45	Dynamic response of a rotating disk submerged and confined. Influence of the axial gap. Journal of Fluids and Structures, 2016, 62, 332-349.	3.4	26
46	On the detection of natural frequencies and mode shapes of submerged rotating disk-like structures from the casing. Mechanical Systems and Signal Processing, 2015, 60-61, 547-570.	8.0	30
47	Condition monitoring of pump-turbines. New challenges. Measurement: Journal of the International Measurement Confederation, 2015, 67, 151-163.	5.0	53
48	Influence of the rotation on the natural frequencies of a submerged-confined disk in water. Journal of Sound and Vibration, 2015, 337, 161-180.	3.9	37
49	Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk due to Rotor-Stator Interaction. Sensors, 2014, 14, 11919-11942.	3.8	32
50	Experimental study on the added mass and damping of a disk submerged in a partially fluid-filled tank with small radial confinement. Journal of Fluids and Structures, 2014, 50, 1-17.	3.4	52
51	Numerical and experimental analysis of the dynamic response of large submerged trash-racks. Computers and Fluids, 2013, 71, 54-64.	2.5	15
52	Behavior of Francis turbines at part load. Field assessment in prototype: Effects on power swing. IOP Conference Series: Earth and Environmental Science, 0, 240, 062012.	0.3	4