Charalampos Kalodimos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5286976/publications.pdf

Version: 2024-02-01

23 papers

1,731 citations

471509 17 h-index 23 g-index

28 all docs 28 docs citations

times ranked

28

2331 citing authors

#	Article	IF	CITATIONS
1	Imatinib can act as an Allosteric Activator of Abl Kinase. Journal of Molecular Biology, 2022, 434, 167349.	4.2	9
2	Progress toward automated methyl assignments for methyl-TROSY applications. Structure, 2022, 30, 69-79.e2.	3.3	4
3	Synthesis of Isotopically Labeled, Spin-Isolated Tyrosine and Phenylalanine for Protein NMR Applications. Organic Letters, 2021, 23, 6288-6292.	4.6	4
4	Mechanism for the activation of the anaplastic lymphoma kinase receptor. Nature, 2021, 600, 153-157.	27.8	28
5	Conformational states dynamically populated by a kinase determine its function. Science, 2020, 370, .	12.6	134
6	Toolkit for NMR Studies of Methyl-Labeled Proteins. Methods in Enzymology, 2019, 614, 107-142.	1.0	17
7	Structures of chaperone-substrate complexes docked onto the export gate in a type III secretion system. Nature Communications, 2018, 9, 1773.	12.8	72
8	Oligomerization of a molecular chaperone modulates its activity. ELife, 2018, 7, .	6.0	51
9	Structures of Large Protein Complexes Determined by Nuclear Magnetic Resonance Spectroscopy. Annual Review of Biophysics, 2017, 46, 317-336.	10.0	62
10	Automatic methyl assignment in large proteins by the MAGIC algorithm. Journal of Biomolecular NMR, 2017, 69, 215-227.	2.8	44
11	A community resource of experimental data for <scp>NMR</scp> / <scp>X</scp> â€ray crystal structure pairs. Protein Science, 2016, 25, 30-45.	7.6	24
12	Structural basis for the antifolding activity of a molecular chaperone. Nature, 2016, 537, 202-206.	27.8	135
13	Recognition and targeting mechanisms by chaperones in flagellum assembly and operation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9798-9803.	7.1	25
14	15N and 13C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [1H,13C]-labeled proteins. Journal of Biomolecular NMR, 2016, 66, 259-271.	2.8	56
15	Exploiting E. coli auxotrophs for leucine, valine, and threonine specific methyl labeling of large proteins for NMR applications. Journal of Biomolecular NMR, 2016, 65, 99-108.	2.8	29
16	Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Research, 2015, 43, 5647-5663.	14.5	26
17	A hybrid NMR/SAXSâ€based approach for discriminating oligomeric protein interfaces using <scp>R</scp> osetta. Proteins: Structure, Function and Bioinformatics, 2015, 83, 309-317.	2.6	33
18	Structural Basis for Protein Antiaggregation Activity of the Trigger Factor Chaperone. Science, 2014, 344, 1250494.	12.6	254

#	Article	IF	CITATIONS
19	Structures of apo- and ssDNA-bound YdbC from Lactococcus lactis uncover the function of protein domain family DUF2128 and expand the single-stranded DNA-binding domain proteome. Nucleic Acids Research, 2013, 41, 2756-2768.	14.5	10
20	A microscale protein NMR sample screening pipeline. Journal of Biomolecular NMR, 2010, 46, 11-22.	2.8	106
21	Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6927-6932.	7.1	197
22	Structural elucidation of the Cysâ€Hisâ€Gluâ€Asn proteolytic relay in the secreted CHAP domain enzyme from the human pathogen <i>Staphylococcus saprophyticus</i> Bioinformatics, 2009, 74, 515-519.	2.6	30
23	Structural Basis for Signal-Sequence Recognition by the Translocase Motor SecA as Determined by NMR. Cell, 2007, 131, 756-769.	28.9	381