Radim Hédl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5286862/publications.pdf

Version: 2024-02-01

		147726	128225
67	3,865	31	60
papers	citations	h-index	g-index
69	69	69	5498
all docs	docs citations	times ranked	citing authors
an does	does citations	tilles fallked	citing authors

#	Article	IF	CITATIONS
1	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18561-18565.	3.3	523
2	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
3	Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology, 2012, 100, 352-365.	1.9	214
4	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
5	Half a century of succession in a temperate oakwood: from speciesâ€rich community to mesic forest. Diversity and Distributions, 2010, 16, 267-276.	1.9	185
6	Resurveying historical vegetation data $\hat{a} \in \text{``opportunities'}$ and challenges. Applied Vegetation Science, 2017, 20, 164-171.	0.9	136
7	Coppice abandonment and its implications for species diversity in forest vegetation. Forest Ecology and Management, 2015, 343, 88-100.	1.4	126
8	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	4.2	124
9	Nonâ€random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology, 2013, 50, 79-87.	1.9	121
10	Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. Nature Communications, 2017, 8, 1966.	5.8	116
11	Advancing the Integration of History and Ecology for Conservation. Conservation Biology, 2011, 25, 680-687.	2.4	110
12	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	4.2	93
13	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	2.2	89
14	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	2.2	78
15	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
16	Experimental restoration of coppice-with-standards: Response of understorey vegetation from the conservation perspective. Forest Ecology and Management, 2013, 310, 234-241.	1.4	69
17	The rise and fall of traditional forest management in southern Moravia: A history of the past 700 years. Forest Ecology and Management, 2014, 331, 104-115.	1.4	68
18	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67

#	Article	IF	CITATIONS
19	Tree-Rings Mirror Management Legacy: Dramatic Response of Standard Oaks to Past Coppicing in Central Europe. PLoS ONE, 2013, 8, e55770.	1.1	63
20	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	1.1	51
21	Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution, 2018, 242, 1787-1799.	3.7	49
22	Light availability and landâ€use history drive biodiversity and functional changes in forest herb layer communities. Journal of Ecology, 2020, 108, 1411-1425.	1.9	49
23	Vegetation of beech forests in the Rychlebské Mountains, Czech Republic, re-inspected after 60 years with assessment of environmental changes. Plant Ecology, 2004, 170, 243-265.	0.7	48
24	Resurvey of historical vegetation plots: a tool for understanding longâ€ŧerm dynamics of plant communities. Applied Vegetation Science, 2017, 20, 161-163.	0.9	48
25	Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. Forest Ecology and Management, 2019, 433, 405-418.	1.4	46
26	Environmental drivers interactively affect individual tree growth across temperate European forests. Global Change Biology, 2019, 25, 201-217.	4.2	44
27	Strong influence of long-distance edge effect on herb-layer vegetation in forest fragments in an agricultural landscape. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 293-303.	1.1	40
28	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
29	Variation in vegetation and microbial linkages with slope aspect in a montane temperate hardwood forest. Ecosphere, 2014, 5, 1-17.	1.0	35
30	Continuity and change in the vegetation of a Central European oakwood. Holocene, 2013, 23, 46-56.	0.9	34
31	Red List of Habitats of the Czech Republic. Ecological Indicators, 2019, 106, 105446.	2.6	33
32	Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conservation Biology, 2017, 31, 150-160.	2.4	31
33	Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils. New Phytologist, 2014, 202, 431-441.	3.5	29
34	Open oakwoods facing modern threats: Will they survive the next fifty years?. Biological Conservation, 2017, 210, 163-173.	1.9	28
35	Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains. Environmental Pollution, 2011, 159, 2586-2593.	3.7	26
36	Socio-Economic Demands, Ecological Conditions and the Power of Tradition: Past Woodland Management Decisions in a Central European Landscape. Landscape Research, 2013, 38, 243-261.	0.7	26

#	Article	IF	CITATIONS
37	Drivers of aboveâ€ground understorey biomass and nutrient stocks in temperate deciduous forests. Journal of Ecology, 2020, 108, 982-997.	1.9	25
38	The paradox of longâ€term ungulate impact: increase of plant species richness in a temperate forest. Applied Vegetation Science, 2017, 20, 282-292.	0.9	24
39	Evaluating structural and compositional canopy characteristics to predict the lightâ€demand signature of the forest understorey in mixed, semiâ€natural temperate forests. Applied Vegetation Science, 2021, 24, .	0.9	24
40	Dynamics of herbaceous vegetation during four years of experimental coppice introduction. Folia Geobotanica, 2017, 52, 83-99.	0.4	23
41	ClimPlant: Realized climatic niches of vascular plants in European forest understoreys. Global Ecology and Biogeography, 2021, 30, 1183-1190.	2.7	23
42	A new species of Thismia (Thismiaceae) from Brunei Darussalam, Borneo. Phytotaxa, 2013, 125, 33.	0.1	22
43	Species Richness Pattern along Altitudinal Gradient in Central European Beech Forests. Folia Geobotanica, 2014, 49, 425-441.	0.4	22
44	Is sampling subjectivity a distorting factor in surveys for vegetation diversity?. Folia Geobotanica, 2007, 42, 191-198.	0.4	20
45	A modelâ€based approach to studying changes in compositional heterogeneity. Methods in Ecology and Evolution, 2014, 5, 156-164.	2.2	19
46	Effects of simulated historical tree litter raking on the understorey vegetation in a central European forest. Applied Vegetation Science, 2015, 18, 569-578.	0.9	15
47	Patterns of functional diversity of two trophic groups after canopy thinning in an abandoned coppice. Folia Geobotanica, 2017, 52, 45-58.	0.4	15
48	Legacy of historical litter raking in temperate forest plant communities. Journal of Vegetation Science, 2018, 29, 596-606.	1.1	15
49	Understanding the dynamics of forest understorey: Combination of monitoring and legacy data reveals patterns across temporal scales. Journal of Vegetation Science, 2020, 31, 733-743.	1.1	13
50	Historical charcoal burning and coppicing suppressed beech and increased forest vegetation heterogeneity. Journal of Vegetation Science, 2021, 32, .	1.1	13
51	Positive impact of traditional coppicing restoration on biodiversity of ground-dwelling spiders in a protected lowland forest. Forest Ecology and Management, 2021, 490, 119084.	1.4	12
52	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	1.2	11
53	Thismia brunneomitra, another new species of Thismia (Thismiaceae) from Ulu Temburong, Brunei Darussalam. Phytotaxa, 2015, 234, 172.	0.1	10
54	Coppicing systems as a way of understanding patterns in forest vegetation. Folia Geobotanica, 2017, 52, 1-3.	0.4	9

#	Article	IF	CITATIONS
55	Variability of Soil Types in Wetland Meadows in the South of the Chilean Patagonia. Chilean Journal of Agricultural Research, 2010, 70, .	0.4	9
56	Plant diversity in deciduous temperate forests reflects interplay among ancient and recent environmental stress. Journal of Vegetation Science, 2020, 31, 53-62.	1.1	7
57	Magellanic Wetlands: More than Moor. Folia Geobotanica, 2013, 48, 163-188.	0.4	6
58	Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Regional Environmental Change, 2017, 17, 501-514.	1.4	6
59	Syntaxonomy and ecology of beech forest vegetation in southwestern Poland. Phytocoenologia, 2018, 48, 297-320.	1.2	6
60	Grappling with Interdisciplinary Research: Response to Pooley. Conservation Biology, 2013, 27, 1484-1486.	2.4	4
61	Lowland pine forests in the northwestern Pannonian Basin: between natural vegetation and modern plantations. Regional Environmental Change, 2019, 19, 2395-2409.	1.4	4
62	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
63	Standard trees versus underwood: Historical patterns of tree taxon occurrence in coppice forests. Journal of Vegetation Science, 2021, 32, .	1.1	3
64	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	3
65	Spatial Modeling of Vegetation Potential: An Introduction. Folia Geobotanica, 2014, 49, 309-312.	0.4	2
66	The importance of history for understanding contemporary ecosystems: Insights from vegetation science. Journal of Vegetation Science, 2021, 32, e13048.	1.1	2
67	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	1