
Ulf Thrane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5286658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Pilot Study on Baseline Fungi and Moisture Indicator Fungi in Danish Homes. Journal of Fungi (Basel,) Tj ETQq1	0.78431 1.5	4_rgBT /Ov∈
2	Role and Use of Secondary Metabolites in Fungal Taxonomy. , 2020, , 289-319.		3
3	On the biosynthetic origin of carminic acid. Insect Biochemistry and Molecular Biology, 2018, 96, 51-61.	1.2	12
4	Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans. Scientific Reports, 2018, 8, 12853.	1.6	35
5	Genome Sequence of <i>Talaromyces atroroseus</i> , Which Produces Red Colorants for the Food Industry. Genome Announcements, 2017, 5, .	0.8	7
6	Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9. PLoS ONE, 2017, 12, e0169712.	1.1	74
7	A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Frontiers in Microbiology, 2016, 7, 406.	1.5	124
8	Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes. International Journal of Food Microbiology, 2016, 221, 29-36.	2.1	27
9	Peptaibol, Secondaryâ€Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of the <i>Trichoderma harzianum</i> Complex. Chemistry and Biodiversity, 2015, 12, 662-684.	1.0	57
10	Genome and physiology of the ascomycete filamentous fungus <scp><i>X</i></scp> <i>eromyces bisporus</i> , the most xerophilic organism isolated to date. Environmental Microbiology, 2015, 17, 496-513.	1.8	34
11	The Genome of the Generalist Plant Pathogen Fusarium avenaceum Is Enriched with Genes Involved in Redox, Signaling and Secondary Metabolism. PLoS ONE, 2014, 9, e112703.	1.1	78
12	Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Diversity, 2014, 69, 117-146.	4.7	33
13	Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production. International Journal of Food Microbiology, 2013, 160, 313-322.	2.1	53
14	Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov Fungal Genetics and Biology, 2013, 53, 59-70.	0.9	142
15	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	1.1	219
16	Screening the Biosphere: The Fungicolous Fungus <i>Trichoderma phellinicola</i> , a Prolific Source of Hypophellins, New 17â€, 18â€, 19â€, and 20â€Residue Peptaibiotics. Chemistry and Biodiversity, 2013, 10, 78	7 <mark>-8</mark> 12.	22
17	Production of fusarielins by Fusarium. International Journal of Food Microbiology, 2013, 160, 206-211.	2.1	26
18	Talaromyces atroroseus, a New Species Efficiently Producing Industrially Relevant Red Pigments. PLoS ONE, 2013, 8, e84102.	1.1	131

I I F THDANE

#	Article	IF	CITATIONS
19	Hypopulvins, novel peptaibiotics from the polyporicolous fungus Hypocrea pulvinata, are produced during infection of its natural hosts. Fungal Biology, 2012, 116, 1219-1231.	1.1	20
20	Production of fumonisins B2 and B4 in Tolypocladium species. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1329-1335.	1.4	50
21	Single-kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 1-11.	1.1	13
22	Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains. PLoS ONE, 2011, 6, e23496.	1.1	172
23	The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus, 2011, 2, 105-111.	1.7	320
24	Fungal polyketide azaphilone pigments as future natural food colorants?. Trends in Biotechnology, 2010, 28, 300-307.	4.9	223
25	Chemical characterization of Phoma pomorum isolated from Danish maize. International Journal of Food Microbiology, 2010, 136, 310-317.	2.1	11
26	Dynamics in the microbiology of maize silage during whole-season storage. Journal of Applied Microbiology, 2010, 109, 1017-1026.	1.4	59
27	<i>Fusarium</i> spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environmental Microbiology, 2010, 12, 649-657.	1.8	153
28	Qualified presumption of safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends in Food Science and Technology, 2010, 21, 425-435.	7.8	129
29	Production of Fumonisin B ₂ and B ₄ by <i>Aspergillus niger</i> on Grapes and Raisins. Journal of Agricultural and Food Chemistry, 2010, 58, 954-958.	2.4	138
30	Aspergillus acidus from Puerh tea and black tea does not produce ochratoxin A and fumonisin B2. International Journal of Food Microbiology, 2009, 132, 141-144.	2.1	44
31	Photostability of Natural Orangeâ^'Red and Yellow Fungal Pigments in Liquid Food Model Systems. Journal of Agricultural and Food Chemistry, 2009, 57, 6253-6261.	2.4	44
32	Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microbial Cell Factories, 2009, 8, 24.	1.9	131
33	Analysis of <i>Fusarium avenaceum</i> Metabolites Produced during Wet Apple Core Rot. Journal of Agricultural and Food Chemistry, 2009, 57, 1632-1639.	2.4	66
34	Potato carrot agar with manganese as an isolation medium for Alternaria, Epicoccum and Phoma. International Journal of Food Microbiology, 2009, 130, 22-26.	2.1	12
35	Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. BMC Microbiology, 2009, 9, 281.	1.3	68
36	The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycological Progress, 2008, 7, 177-219.	0.5	136

#	Article	IF	CITATIONS
37	Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on a solid rice medium. Biotechnology Letters, 2008, 30, 2183-2190.	1.1	26
38	The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycological Research, 2008, 112, 231-240.	2.5	294
39	Computerized Screening for Novel Producers of <i>Monascus-</i> like Food Pigments in <i>Penicillium</i> Species. Journal of Agricultural and Food Chemistry, 2008, 56, 9981-9989.	2.4	73
40	Development of a LC-MS/MS Method for the Analysis of Enniatins and Beauvericin in Whole Fresh and Ensiled Maize. Journal of Agricultural and Food Chemistry, 2008, 56, 10439-10443.	2.4	77
41	The exo-metabolome in filamentous fungi. Topics in Current Genetics, 2007, , 235-252.	0.7	11
42	Fumonisin B ₂ Production by Aspergillus niger. Journal of Agricultural and Food Chemistry, 2007, 55, 9727-9732.	2.4	319
43	Analysis of Moniliformin in Maize Plants Using Hydrophilic Interaction Chromatography. Journal of Agricultural and Food Chemistry, 2007, 55, 9764-9768.	2.4	33
44	Comparing the effect of continuous drying and drum drying on fungal contamination of bread grain (rye). Biosystems Engineering, 2007, 97, 425-428.	1.9	1
45	Colorimetric Characterization for Comparative Analysis of Fungal Pigments and Natural Food Colorants. Journal of Agricultural and Food Chemistry, 2006, 54, 7027-7035.	2.4	86
46	The PKS4 Gene of Fusarium graminearum Is Essential for Zearalenone Production. Applied and Environmental Microbiology, 2006, 72, 3924-3932.	1.4	108
47	Important mycotoxins and the fungi which produce them. Advances in Experimental Medicine and Biology, 2006, 571, 3-31.	0.8	145
48	Food-borne fungi in fruit and cereals and their production of mycotoxins. Advances in Experimental Medicine and Biology, 2006, 571, 137-152.	0.8	44
49	Host-derived media used as a predictor for low abundant, in planta metabolite production from necrotrophic fungi. Journal of Applied Microbiology, 2006, 101, 1292-1300.	1.4	15
50	High-temperature Treatment for Efficient Drying of Bread Rye and Reduction of Fungal Contaminants. Biosystems Engineering, 2005, 92, 183-195.	1.9	8
51	Clarification of the agents causing blue mold storage rot upon various flower and vegetable bulbs: implications for mycotoxin contamination. Postharvest Biology and Technology, 2005, 35, 217-221.	2.9	33
52	Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Current Opinion in Biotechnology, 2005, 16, 231-238.	3.3	226
53	An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. Journal of Microbiological Methods, 2005, 62, 57-69.	0.7	58
54	Identification of cytotoxic principles from Fusarium avenaceum using bioassay-guided fractionation. Toxicon, 2005, 46, 150-159.	0.8	24

#	Article	IF	CITATIONS
55	Trichothecene Production byTrichoderma brevicompactum. Journal of Agricultural and Food Chemistry, 2005, 53, 8190-8196.	2.4	122
56	Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. International Journal of Food Microbiology, 2004, 95, 257-266.	2.1	259
57	An integrated taxonomic study of Fusarium langsethiae, Fusarium poae and Fusarium sporotrichioides based on the use of composite datasets. International Journal of Food Microbiology, 2004, 95, 341-349.	2.1	30
58	Fusarium taxonomy with relation to trichothecene formation. Toxicology Letters, 2004, 153, 23-28.	0.4	53
59	The Name Fusarium Moniliforme Should no Longer be Used. Mycological Research, 2003, 107, 643-644.	2.5	94
60	Determination of fungal spore release from wet building materials. Indoor Air, 2003, 13, 148-155.	2.0	86
61	The Prevalence and Distribution ofFusariumspecies in Norwegian Cereals: a Survey. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2003, 53, 168-176.	0.3	48
62	Molecular and Phenotypic Descriptions of Stachybotrys chlorohalonata sp. nov. and Two Chemotypes of Stachybotrys chartarum Found in Water-Damaged Buildings. Mycologia, 2003, 95, 1227.	0.8	46
63	Molecular and phenotypic descriptions of <i>Stachybotrys chlorohalonata</i> sp. nov. and two chemotypes of <i>Stachybotrys chartarum</i> found in water-damaged buildings. Mycologia, 2003, 95, 1227-1238.	0.8	85
64	Production of Trichothecenes and Other Secondary Metabolites by Fusarium culmorum and Fusarium equiseti on Common Laboratory Media and a Soil Organic Matter Agar:  An Ecological Interpretation. Journal of Agricultural and Food Chemistry, 2002, 50, 7593-7599.	2.4	74
65	GUS and GFP transformation of the biocontrol strain Clonostachys rosea IK726 and the use of these marker genes in ecological studies. Mycological Research, 2002, 106, 815-826.	2.5	64
66	Fast methods for screening of trichothecenes in fungal cultures using gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 2001, 929, 75-87.	1.8	81
67	Identification ofTrichodermastrains by image analysis of HPLC chromatograms. FEMS Microbiology Letters, 2001, 203, 249-255.	0.7	42
68	Identification ofTrichodermastrains from building materials by ITS1 ribotyping, UP-PCR fingerprinting and UP-PCR cross hybridization. FEMS Microbiology Letters, 2000, 185, 129-134.	0.7	41
69	Fusaria and fumonisins in maize from Ghana and their co-occurrence with aflatoxins. International Journal of Food Microbiology, 2000, 61, 147-157.	2.1	107
70	Fast methods for screening of trichothecenes in fungal cultures using GC-MS/MS. Mycotoxin Research, 2000, 16, 252-256.	1.3	3
71	Identification of Trichoderma strains from building materials by ITS1 ribotyping, UP-PCR fingerprinting and UP-PCR cross hybridization. FEMS Microbiology Letters, 2000, 185, 129-134.	0.7	33
72	Production of mycotoxins on artificially and naturally infested building materials. Mycopathologia, 1999, 145, 43-56.	1.3	162

#	Article	IF	CITATIONS
73	A resource-saving method for isolation of Fusarium and other fungi from individual soil particles. Mycological Research, 1999, 103, 1545-1548.	2.5	8
74	Production of trichothecene mycotoxins on water damaged gypsum boards in Danish buildings. International Biodeterioration and Biodegradation, 1998, 42, 1-7.	1.9	71
75	Production of mycotoxins on artificially inoculated building materials. International Biodeterioration and Biodegradation, 1998, 42, 9-16.	1.9	76
76	Morphological Instabilities in a Growing Yeast Colony: Experiment and Theory. Physical Review Letters, 1997, 79, 313-316.	2.9	32
77	(1275) Proposal to conserve the name Fusarium sambucinum (Hyphomycetes). Taxon, 1997, 46, 111-113.	0.4	11
78	Variations in random amplified polymorphic DNA patterns and secondary metabolite profiles withinFusariumspecies from cereals from various parts of The Netherlands. Food Microbiology, 1997, 14, 449-457.	2.1	29
79	The Occurrence of Fusarium SPP. In Norwegian Grain — A Survey. Cereal Research Communications, 1997, 25, 595-596.	0.8	20
80	Differentiation of <i>Altemaria infectoria</i> and <i>Alternaria alternata</i> based on morphology, metabolite profiles, and cultural characteristics. Canadian Journal of Microbiology, 1996, 42, 685-689.	0.8	77
81	Secondary metabolites produced byAltemaria infectoria and their use as chemotaxonomic markers. Mycotoxin Research, 1996, 12, 54-60.	1.3	12
82	Associated field mycobiota on malt barley. Canadian Journal of Botany, 1996, 74, 854-858.	1.2	60
83	Comparison of three selective media for detecting Fusarium species in foods: a collaborative study. International Journal of Food Microbiology, 1996, 29, 149-156.	2.1	25
84	Moulds in food spoilage. International Journal of Food Microbiology, 1996, 33, 85-102.	2.1	330
85	Identification of Fungi by Secondary Metabolites. Developments in Plant Pathology, 1996, , 91-98.	0.1	0
86	Chemical and physiological characterization of taxa in theFusarium sambucinum complex. Mycopathologia, 1995, 129, 183-190.	1.3	36
87	FUSKEY, an interactive computer key to commonFusarium species. Mycotoxin Research, 1991, 7, 50-53.	1.3	9
88	Grouping Fusarium section Discolor isolates by statistical analysis of quantitative high performance liquid chromatographic data on secondary metabolite production. Journal of Microbiological Methods, 1990, 12, 23-39.	0.7	35
89	Analysis and screening for mycotoxins and other secondary metabolites in fungal cultures by thin-layer chromatography and high-performance liquid chromatography. Archives of Environmental Contamination and Toxicology, 1989, 18, 331-335.	2.1	44
90	FUSARIUM SPECIES AND THEIR SPECIFIC PROFILES OF SECONDARY METABOLITES. , 1989, , 199-225.		27

6

#	Article	IF	CITATIONS
91	Screening for Fusarin C production by European isolates of Fusarium species. Mycotoxin Research, 1988, 4, 2-10.	1.3	28
92	Czapek-Dox agar containing iprodione and dicloran as a selective medium for the isolation of Fusarium species. Letters in Applied Microbiology, 1987, 5, 83-86.	1.0	117
93	Species specific profiles of secondary metabolites within the genusFusarium, obtained by reversed phase high performance liquid chromatography. Mycotoxin Research, 1987, 3, 21-24.	1.3	0
94	Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV—VIS spectra (diodearray detection). Journal of Chromatography A, 1987, 404, 195-214.	1.8	363
95	The ability of common Fusarium species to grow on tannin-sucrose agar. Letters in Applied Microbiology, 1986, 2, 33-35.	1.0	22
96	Detection of toxigenic Fusarium isolates by thin layer chromatography. Letters in Applied Microbiology, 1986, 3, 93-96.	1.0	38
97	Mycotoxins in silage. Stewart Postharvest Review, 0, 4, 1-12.	0.7	41