
Kwon-Yul Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528656/publications.pdf Version: 2024-02-01

KWON-YIII RVII

#	Article	IF	CITATIONS
1	Increased clearance of non-biodegradable polystyrene nanoplastics by exocytosis through inhibition of retrograde intracellular transport. Journal of Hazardous Materials, 2022, 439, 129576.	6.5	8
2	Stress Response of Mouse Embryonic Fibroblasts Exposed to Polystyrene Nanoplastics. International Journal of Molecular Sciences, 2021, 22, 2094.	1.8	20
3	Regulation of polyubiquitin genes to meet cellular ubiquitin requirement. BMB Reports, 2021, 54, 189-195.	1.1	8
4	Polyubiquitin gene Ubb is required for upregulation of Piwi protein level during mouse testis development. Cell Death Discovery, 2021, 7, 194.	2.0	8
5	Free ubiquitin: a novel therapeutic target for neurodegenerative diseases. Neural Regeneration Research, 2021, 16, 1781.	1.6	0
6	Simultaneous Disruption of Both Polyubiquitin Genes Affects Proteasome Function and Decreases Cellular Proliferation. Cell Biochemistry and Biophysics, 2020, 78, 321-329.	0.9	4
7	Neurotoxic potential of polystyrene nanoplastics in primary cells originating from mouse brain. NeuroToxicology, 2020, 81, 189-196.	1.4	55
8	Reduced free ubiquitin levels and proteasome activity in cultured neurons and brain tissues treated with amyloid beta aggregates. Molecular Brain, 2020, 13, 89.	1.3	10
9	Disruption of the polyubiquitin gene Ubb reduces the self-renewal capacity of neural stem cells. Biochemical and Biophysical Research Communications, 2020, 527, 372-378.	1.0	6
10	Reversible Regulation of Polyubiquitin Gene UBC via Modified Inducible CRISPR/Cas9 System. International Journal of Molecular Sciences, 2019, 20, 3168.	1.8	4
11	Disruption of the polyubiquitin gene Ubb causes retinal degeneration in mice. Biochemical and Biophysical Research Communications, 2019, 513, 35-40.	1.0	7
12	Cytoprotective role of ubiquitin against toxicity induced by polyglutamine-expanded aggregates. Biochemical and Biophysical Research Communications, 2018, 500, 344-350.	1.0	3
13	Temporal downregulation of the polyubiquitin gene Ubb affects neuronal differentiation, but not maturation, in cells cultured in vitro. Scientific Reports, 2018, 8, 2629.	1.6	14
14	Effect of cellular ubiquitin levels on the regulation of oxidative stress response and proteasome function via Nrf1. Biochemical and Biophysical Research Communications, 2017, 485, 234-240.	1.0	14
15	Effect of p62/SQSTM1 polyubiquitination on its autophagic adaptor function and cellular survival under oxidative stress induced by arsenite. Biochemical and Biophysical Research Communications, 2017, 486, 839-844.	1.0	12
16	Regulation of REST levels overcomes dysregulation of neural stem cell differentiation caused by disruption of polyubiquitin gene Ubb. Biochemical and Biophysical Research Communications, 2017, 486, 171-177.	1.0	0
17	A gold nanoparticle-mediated rapid in vitro assay of anti-aggregation reagents for amyloid Î ² and its validation. Chemical Communications, 2017, 53, 4449-4452.	2.2	12
18	Disruption of polyubiquitin gene Ubc leads to attenuated resistance against arsenite-induced toxicity in mouse embryonic fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 996-1009.	1.9	33

KWON-YUL RYU

#	Article	IF	CITATIONS
19	Ubiquitin homeostasis: from neural stem cell differentiation to neuronal development. Neural Regeneration Research, 2015, 10, 1209.	1.6	4
20	Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering. PLoS Genetics, 2014, 10, e1004861.	1.5	140
21	Restoration of cellular ubiquitin reverses impairments in neuronal development caused by disruption of the polyubiquitin gene Ubb. Biochemical and Biophysical Research Communications, 2014, 453, 443-448.	1.0	16
22	Disruption of polyubiquitin gene Ubb causes dysregulation of neural stem cell differentiation with premature gliogenesis. Scientific Reports, 2014, 4, 7026.	1.6	32
23	Cellular ubiquitin pool dynamics and homeostasis. BMB Reports, 2014, 47, 475-482.	1.1	99
24	Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells. Biochemical and Biophysical Research Communications, 2013, 435, 434-440.	1.0	10
25	Locus coeruleus neurons are resistant to dysfunction and degeneration by maintaining free ubiquitin levels although total ubiquitin levels decrease upon disruption of polyubiquitin gene Ubb. Biochemical and Biophysical Research Communications, 2012, 418, 541-546.	1.0	12
26	Perturbation of the Hematopoietic System during Embryonic Liver Development Due to Disruption of Polyubiquitin Gene Ubc in Mice. PLoS ONE, 2012, 7, e32956.	1.1	13
27	Quantification of oxidative stress in live mouse embryonic fibroblasts by monitoring the responses of polyubiquitin genes. Biochemical and Biophysical Research Communications, 2011, 404, 470-475.	1.0	14
28	Altered testicular gene expression patterns in mice lacking the polyubiquitin gene <i>Ubb</i> . Molecular Reproduction and Development, 2011, 78, 415-425.	1.0	20
29	Loss of polyubiquitin gene <i>Ubb</i> leads to metabolic and sleep abnormalities in mice. Neuropathology and Applied Neurobiology, 2010, 36, 285-299.	1.8	17
30	Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. Journal of Cell Biology, 2010, 191, 537-552.	2.3	156
31	The polyubiquitin <i>Ubc</i> gene modulates histone H2A monoubiquitylation in the R6/2 mouse model of Huntington's disease. Journal of Cellular and Molecular Medicine, 2009, 13, 2645-2657.	1.6	23
32	The Mouse Polyubiquitin Gene <i>Ubb</i> Is Essential for Meiotic Progression. Molecular and Cellular Biology, 2008, 28, 1136-1146.	1.1	87
33	Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the <i>Ubb</i> polyubiquitin gene. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4016-4021.	3.3	83
34	The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO Journal, 2007, 26, 2693-2706.	3.5	138
35	Global changes to the ubiquitin system in Huntington's disease. Nature, 2007, 448, 704-708.	13.7	478
36	Ubiquitin-specific protease 2 as a tool for quantification of total ubiquitin levels in biological specimens. Analytical Biochemistry, 2006, 353, 153-155.	1.1	48

KWON-YUL RYU

#	Article	IF	CITATIONS
37	Signaling through 3′,5′-Cyclic Adenosine Monophosphate and Phosphoinositide-3 Kinase Induces Sodium/lodide Symporter Expression in Breast Cancer. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5196-5203.	1.8	27
38	Application of the Cre/loxP System to Enhance Thyroid-Targeted Expression of Sodium/lodide Symporter. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2344-2350.	1.8	11
39	Cloning of the 5′-Flanking Region of Mouse Sodium/Iodide Symporter and Identification of a Thyroid-Specific and TSH-Responsive Enhancer. Thyroid, 2004, 14, 19-27.	2.4	13
40	Development of Reverse Transcription-Competitive Polymerase Chain Reaction Method to Quantitate the Expression Levels of Human Sodium Iodide Symporter. Thyroid, 1999, 9, 405-409.	2.4	41
41	An Immunohistochemical Study of Na ⁺ /I ^{â^'} Symporter in Human Thyroid Tissues and Salivary Gland Tissues. Endocrinology, 1998, 139, 4416-4419.	1.4	175
42	Promoter Characterization of the Human Na ⁺ /l ^{â^'} Symporter ¹ . Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3247-3251.	1.8	43
43	Expression, Exon-Intron Organization, and Chromosome Mapping of the Human Sodium Iodide Symporter. Endocrinology, 1997, 138, 3555-3558.	1.4	191
44	Promoter Characterization of the Rat Na+/lâ^'Symporter Gene. Biochemical and Biophysical Research Communications, 1997, 239, 34-41.	1.0	44
45	Expression, Exon-Intron Organization, and Chromosome Mapping of the Human Sodium Iodide Symporter. , 0, .		46
46	An Immunohistochemical Study of Na+/Iâ^' Symporter in Human Thyroid Tissues and Salivary Gland Tissues. , 0, .		49