
Weihua Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5286452/publications.pdf Version: 2024-02-01

Μειμιλ Ζησιι

#	Article	IF	CITATIONS
1	A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: A feasibility study. Journal of Nuclear Cardiology, 2020, 27, 976-987.	2.1	72
2	Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images. Pattern Recognition, 2021, 119, 108071.	8.1	62
3	Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms. Computers in Biology and Medicine, 2021, 136, 104667.	7.0	51
4	3D Fusion of LV Venous Anatomy on Fluoroscopy Venograms With Epicardial Surface on SPECT Myocardial Perfusion Images for Guiding CRT LV Lead Placement. JACC: Cardiovascular Imaging, 2014, 7, 1239-1248.	5.3	43
5	NMD-12: A new machine-learning derived screening instrument to detect mild cognitive impairment and dementia. PLoS ONE, 2019, 14, e0213430.	2.5	40
6	Machine Learning for the Preliminary Diagnosis of Dementia. Scientific Programming, 2020, 2020, 1-10.	0.7	34
7	Nuclear Image-Guided Approaches for Cardiac Resynchronization Therapy (CRT). Current Cardiology Reports, 2016, 18, 7.	2.9	33
8	Left ventricular systolic and diastolic dyssynchrony to improve cardiac resynchronization therapy response in heart failure patients with dilated cardiomyopathy. Journal of Nuclear Cardiology, 2021, 28, 1023-1036.	2.1	19
9	A novel method for ECG signal classification via one-dimensional convolutional neural network. Multimedia Systems, 2022, 28, 1387-1399.	4.7	18
10	Analyze Informant-Based Questionnaire for The Early Diagnosis of Senile Dementia Using Deep Learning. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8, 1-6.	3.7	17
11	Predictive values of left ventricular mechanical dyssynchrony for CRT response in heart failure patients with different pathophysiology. Journal of Nuclear Cardiology, 2022, 29, 2637-2648.	2.1	17
12	Assessment of left ventricular contraction patterns using gated SPECT MPI to predict cardiac resynchronization therapy response. Journal of Nuclear Cardiology, 2018, 25, 2029-2038.	2.1	15
13	Summed thickening score by myocardial perfusion imaging: A risk factor of left ventricular remodeling in patients with myocardial infarction. Journal of Nuclear Cardiology, 2018, 25, 742-753.	2.1	14
14	Development and validation of an automatic method to detect the latest contracting viable left ventricular segments to assist guide CRT therapy from gated SPECT myocardial perfusion imaging. Journal of Nuclear Cardiology, 2018, 25, 1948-1957.	2.1	14
15	Prognostic value of left-ventricular systolic and diastolic dyssynchrony measured from gated SPECT MPI in patients with dilated cardiomyopathy. Journal of Nuclear Cardiology, 2020, 27, 1582-1591.	2.1	13
16	A new method to recommend left ventricular lead positions for improved CRT volumetric response and long-term prognosis. Journal of Nuclear Cardiology, 2021, 28, 672-684.	2.1	12
17	Right ventricular dyssynchrony in pulmonary hypertension: Phase analysis using FDG-PET imaging. Journal of Nuclear Cardiology, 2017, 24, 69-78.	2.1	9
18	Development and validation of a phase analysis tool to measure interventricular mechanical dyssynchrony from gated SPECT MPI. Journal of Nuclear Cardiology, 2017, 24, 1680-1686.	2.1	9

WEIHUA ZHOU

#	Article	IF	CITATIONS
19	3D fusion between fluoroscopy angiograms and SPECT myocardial perfusion images to guide percutaneous coronary intervention. Journal of Nuclear Cardiology, 2022, 29, 1870-1884.	2.1	9
20	I -123 metaiodobenzylguanidine imaging for predicting ventricular arrhythmia in heart failure patients. Journal of Biomedical Research, 2013, 27, 460-6.	1.6	9
21	ST-V-Net: incorporating shape prior into convolutional neural networks for proximal femur segmentation. Complex & Intelligent Systems, 2023, 9, 2747-2758.	6.5	8
22	Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms. Journal of Advances in Applied & Computational Mathematics, 0, 9, 76-85.	0.1	8
23	Incremental value of myocardial wall motion and thickening to perfusion alone by gated SPECT myocardial perfusion imaging for viability assessment in patients with ischemic heart failure. Journal of Nuclear Cardiology, 2021, 28, 2545-2556.	2.1	7
24	Prognostic value of integrative analysis of electrical and mechanical dyssynchrony in patients with acute heart failure. Journal of Nuclear Cardiology, 2021, 28, 140-149.	2.1	7
25	Incremental value of left ventricular shape parameters measured by gated SPECT MPI in predicting the super-response to CRT. Journal of Nuclear Cardiology, 2022, 29, 1537-1546.	2.1	6
26	Three-dimensional Fusion of Myocardial Perfusion SPECT and Invasive Coronary Angiography Guides Coronary Revascularization. Journal of Nuclear Cardiology, 2022, 29, 3267-3277.	2.1	6
27	Left-ventricular mechanical dyssynchrony in the prognosis of dilated cardiomyopathy: Which parameter is more useful?. Journal of Nuclear Cardiology, 2018, 25, 1688-1691.	2.1	5
28	Prediction of Both Electrical and Mechanical Reverse Remodeling on Acute Electrocardiogram Changes After Cardiac Resynchronization Therapy. Circulation Journal, 2017, 81, 1322-1328.	1.6	4
29	Left-ventricular dyssynchrony in viable myocardium by myocardial perfusion SPECT is predictive of mechanical response to CRT. Annals of Nuclear Medicine, 2021, 35, 947-954.	2.2	4
30	Analysis on SPECT myocardial perfusion imaging with a tool derived from dynamic programming to deep learning. Optik, 2021, 240, 166842.	2.9	4
31	Prognostic value of left ventricular mechanical dyssynchrony in hypertrophic cardiomyopathy patients with low risk of sudden cardiac death. Nuclear Medicine Communications, 2021, 42, 182-189.	1.1	4
32	Incremental Value of Left Ventricular Mechanical Dyssynchrony Assessment by Nitrogen-13 Ammonia ECG-Gated PET in Patients With Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 719565.	2.4	3
33	Left ventricular mechanical dyssynchrony for CAD diagnosis: Does it have incremental clinical values?. Journal of Nuclear Cardiology, 2020, 27, 251-253.	2.1	2
34	Clinical impacts of scar reduction on gated myocardial perfusion SPECT after cardiac resynchronization therapy. Journal of Nuclear Cardiology, 2022, 29, 2571-2579.	2.1	1
35	Scale ratio ICP for 3D registration of coronary venous anatomy with left ventricular epicardial surface to guide CRT lead placement. , 2019, , .		1
36	A Mild Dyssynchronous Contraction Pattern Detected by SPECT Myocardial Perfusion Imaging Predicts Super-Response to Cardiac Resynchronization Therapy. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	1

#	Article	IF	CITATIONS
37	Automatic identification of end-diastolic and end-systolic cardiac frames from invasive coronary angiography videos. Technology and Health Care, 2022, , 1-10.	1.2	1
38	Texture analysis of SPECT myocardial perfusion provides prognostic value for dilated cardiomyopathy. Journal of Nuclear Cardiology, 2023, 30, 504-515.	2.1	0