Josep Lopez-Santin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5286383/publications.pdf Version: 2024-02-01

LOSED LODEZ-SANTIN

#	Article	IF	CITATIONS
1	Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochemical Engineering Journal, 2011, 53, 203-209.	3.6	86
2	Bacillus amyloliquefaciens laccase – From soil bacteria to recombinant enzyme for wastewater decolorization. Bioresource Technology, 2013, 147, 177-183.	9.6	65
3	Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. Journal of Biotechnology, 2012, 157, 391-398.	3.8	42
4	Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochemistry, 2005, 40, 707-716.	3.7	35
5	Induction strategies in fed-batch cultures for recombinant protein production in Escherichia coli: Application to rhamnulose 1-phosphate aldolase. Biochemical Engineering Journal, 2008, 41, 181-187.	3.6	34
6	Ceramic Microsystem Incorporating a Microreactor with Immobilized Biocatalyst for Enzymatic Spectrophotometric Assays. Analytical Chemistry, 2010, 82, 1006-1011.	6.5	33
7	A novel immobilized chloroperoxidase biocatalyst with improved stability for the oxidation of amino alcohols to amino aldehydes. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 144-151.	1.8	30
8	A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode. Biochemical Engineering Journal, 2006, 29, 235-242.	3.6	26
9	Influence of secondary reactions on the synthetic efficiency of DHAP-aldolases. Biotechnology and Bioengineering, 2006, 93, 48-55.	3.3	25
10	Influence of process temperature on recombinant enzyme activity in Escherichia coli fed-batch cultures. Enzyme and Microbial Technology, 2008, 43, 507-512.	3.2	22
11	Alternative production process strategies in E. coli improving protein quality and downstream yields. Process Biochemistry, 2009, 44, 1039-1045.	3.7	22
12	Immobilized l-aspartate ammonia-lyase from Bacillus sp. YM55-1 as biocatalyst for highly concentrated l-aspartate synthesis. Bioprocess and Biosystems Engineering, 2012, 35, 1437-1444.	3.4	22
13	Studies on papain action in the synthesis of Gly-Phe in two-liquid-phase media. Enzyme and Microbial Technology, 1995, 17, 882-887.	3.2	21
14	Studies on the expression of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochemistry, 2004, 39, 1677-1684.	3.7	20
15	Direct measurements of IPTG enable analysis of the induction behavior of E. coli in high cell density cultures. Microbial Cell Factories, 2012, 11, 58.	4.0	19
16	Inclusion bodies of fuculoseâ€lâ€phosphate aldolase as stable and reusable biocatalysts. Biotechnology Progress, 2012, 28, 421-427.	2.6	17
17	Influence of Water Activity and Support Material on the Enzymatic Synthesis of a Cck-8 Tripeptide Fragment. Biocatalysis and Biotransformation, 1996, 13, 165-178.	2.0	16
18	Optimization of the growth of and α-amylase production by Bacillus subtilis IP 5832 in shake flask and laboratory fermenter batch cultures. Journal of the Serbian Chemical Society, 2011, 76, 965-972.	0.8	16

JOSEP LOPEZ-SANTIN

#	Article	IF	CITATIONS
19	l-Phenylalanine synthesis catalyzed by immobilized aspartate aminotransferase. Biochemical Engineering Journal, 2012, 63, 15-21.	3.6	16
20	An immobilized and highly stabilized selfâ€sufficient monooxygenase as biocatalyst for oxidative biotransformations. Journal of Chemical Technology and Biotechnology, 2018, 93, 985-993.	3.2	15
21	Performance of an immobilized fuculose-1-phosphate aldolase for stereoselective synthesis. Biocatalysis and Biotransformation, 2009, 27, 136-142.	2.0	14
22	Development and Validation of a Liquid Chromatography-Mass Spectrometry Assay for the Quantitation of IPTG in <i>E. Coli</i> Fed-Batch Cultures. Analytical Chemistry, 2010, 82, 5728-5734.	6.5	13
23	Integrated Process for the Enzymatic Synthesis of the Octapeptide PhAcCCK-8. Biotechnology Progress, 2002, 18, 1214-1220.	2.6	12
24	From amino alcohol to aminopolyol: one-pot multienzyme oxidation and aldol addition. Applied Microbiology and Biotechnology, 2013, 97, 7173-7183.	3.6	12
25	A <i>Streptomyces lividans</i> SipY deficient strain as a host for protein production: standardization of operational alternatives for model proteins. Journal of Chemical Technology and Biotechnology, 2017, 92, 217-223.	3.2	12
26	Hybrid chloroperoxidaseâ€magnetic nanoparticle clusters: effect of functionalization on biocatalyst performance. Journal of Chemical Technology and Biotechnology, 2018, 93, 233-245.	3.2	12
27	The DsbA signal peptide-mediated secretion of a highly efficient raw-starch-digesting, recombinant α-amylase from Bacillus licheniformis ATCC 9945a. Process Biochemistry, 2013, 48, 438-442.	3.7	11
28	Production of fuculose-1-phosphate aldolase using operator-repressor titration for plasmid maintenance in high cell densityEscherichia coli fermentations. Biotechnology and Bioengineering, 2005, 91, 460-467.	3.3	10
29	Kinetic modelling of aldolase-catalyzed addition between dihydroxyacetone phosphate and (S)-alaninal. Biochemical Engineering Journal, 2008, 41, 95-103.	3.6	10
30	Immobilization of PLP-dependent enzymes with cofactor retention and enhanced stability. Biochemical Engineering Journal, 2010, 49, 414-421.	3.6	10
31	A semiempirical model to control the production of a recombinant aldolase in high cell density cultures of Escherichia coli. Biochemical Engineering Journal, 2011, 55, 82-91.	3.6	10
32	From laboratory to pilot plant E. coli fed-batch cultures: optimizing the cellular environment for protein maximization. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 335-343.	3.0	10
33	A Novel Activity of Immobilized Penicillin G Acylase: Removal of Benzyloxycarbonyl Amino Protecting Group. Biocatalysis and Biotransformation, 2000, 18, 253-258.	2.0	8
34	Chloroperoxidase-catalyzed amino alcohol oxidation: Substrate specificity and novel strategy for the synthesis of N -Cbz-3-aminopropanal. Process Biochemistry, 2016, 51, 1204-1211.	3.7	8
35	HLADH-catalyzed synthesis of β-amino acids, assisted by continuous electrochemical regeneration of NAD + in a filter press microreactor. Chemical Engineering Science, 2017, 158, 196-207.	3.8	8
36	Reaction Engineering for Consecutive Enzymatic Reactions in Peptide Synthesis: Application to the Synthesis of a Pentapeptide. Biotechnology Progress, 1997, 13, 783-787.	2.6	7

JOSEP LOPEZ-SANTIN

#	Article	IF	CITATIONS
37	Papain Immobilization Study in Enzymatic Synthesis of Dipeptide Gly-Phe. Biocatalysis, 1994, 11, 273-281.	0.9	6
38	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
39	Simulation and prediction of protein production in fedâ€batch <i>E. coli</i> cultures: An engineering approach. Biotechnology and Bioengineering, 2016, 113, 772-782.	3.3	5
40	Allosteric molecular sensing of anti-HIV antibodies by an immobilized engineered β-galactosidase. Enzyme and Microbial Technology, 2007, 41, 492-497.	3.2	3
41	Quantitative modeling of inducer transport in fed-batch cultures of Escherichia coli. Biochemical Engineering Journal, 2014, 91, 210-219.	3.6	3
42	Synthesis of a precursor of D-fagomine by immobilized fructose-6-phosphate aldolase. PLoS ONE, 2021, 16, e0250513.	2.5	3
43	Multi-reaction kinetic modeling for the peroxidase–aldolase cascade synthesis of a D-fagomine precursor. Chemical Engineering Science, 2021, 239, 116602.	3.8	3
44	New ammonia lyases and amine transaminases: Standardization of production process and preparation of immobilized biocatalysts. Electronic Journal of Biotechnology, 2013, 16, .	2.2	3
45	Data on the identification and characterization of by-products from N-Cbz-3-aminopropanal and t-BuOOH/H2O2 chemical reaction in chloroperoxidase-catalyzed oxidations. Data in Brief, 2016, 8, 659-665.	1.0	2
46	Title is missing!. Microbial Cell Factories, 2006, 5, P85.	4.0	1