
Okito Yamashita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5286165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Cerebral Cortex Communications, 2022, 3, tgab064.	1.6	2
2	Common Brain Networks Between Major Depressive-Disorder Diagnosis and Symptoms of Depression That Are Validated for Independent Cohorts. Frontiers in Psychiatry, 2021, 12, 667881.	2.6	3
3	A multi-site, multi-disorder resting-state magnetic resonance image database. Scientific Data, 2021, 8, 227.	5.3	48
4	Comparison of travelingâ€subject and <scp>ComBat</scp> harmonization methods for assessing structural brain characteristics. Human Brain Mapping, 2021, 42, 5278-5287.	3.6	47
5	Clustering of Multiple Psychiatric Disorders Using Functional Connectivity in the Data-Driven Brain Subnetwork. Frontiers in Psychiatry, 2021, 12, 683280.	2.6	3
6	MEG current source reconstruction using a meta-analysis fMRI prior. NeuroImage, 2021, 236, 118034.	4.2	6
7	Multiple clustering for identifying subject clusters and brain sub-networks using functional connectivity matrices without vectorization. Neural Networks, 2021, 142, 269-287.	5.9	13
8	Brain/MINDS beyond human brain MRI project: A protocol for multi-level harmonization across brain disorders throughout the lifespan. NeuroImage: Clinical, 2021, 30, 102600.	2.7	34
9	Whole-brain propagating patterns in human resting-state brain activities. NeuroImage, 2021, 245, 118711.	4.2	5
10	Expansion coding and computation in the cerebellum: 50 years after the Marr–Albus codon theory. Journal of Physiology, 2020, 598, 913-928.	2.9	16
11	BCI training to move a virtual hand reduces phantom limb pain. Neurology, 2020, 95, e417-e426.	1.1	16
12	Resting-State Functional Connectivity Estimated With Hierarchical Bayesian Diffuse Optical Tomography. Frontiers in Neuroscience, 2020, 14, 32.	2.8	11
13	Generalizable brain network markers of major depressive disorder across multiple imaging sites. PLoS Biology, 2020, 18, e3000966.	5.6	54
14	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0
15	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		Ο
16	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0
17	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0
18	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0

Οκιτο Υαμαρμιτα

#	Article	IF	CITATIONS
19	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0
20	Estimating repetitive spatiotemporal patterns from many subjects' resting-state fMRIs. NeuroImage, 2019, 203, 116182.	4.2	4
21	Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biology, 2019, 17, e3000042.	5.6	127
22	MEG Source Imaging and Group Analysis Using VBMEG. Frontiers in Neuroscience, 2019, 13, 241.	2.8	13
23	Evaluation of Resting Spatio-Temporal Dynamics of a Neural Mass Model Using Resting fMRI Connectivity and EEG Microstates. Frontiers in Computational Neuroscience, 2019, 13, 91.	2.1	15
24	Development of multi-directional functional near-infrared spectroscopy system for human neuroimaging studies. Biomedical Optics Express, 2019, 10, 1393.	2.9	4
25	Information spreading by a combination of MEG source estimation and multivariate pattern classification. PLoS ONE, 2018, 13, e0198806.	2.5	21
26	Dynamic Information Flow Based on EEG and Diffusion MRI in Stroke: A Proof-of-Principle Study. Frontiers in Neural Circuits, 2018, 12, 79.	2.8	16
27	Anodal transcranial direct current stimulation of the right anterior temporal lobe did not significantly affect verbal insight. PLoS ONE, 2017, 12, e0184749.	2.5	12
28	Characterizing Variability of Modular Brain Connectivity with Constrained Principal Component Analysis. PLoS ONE, 2016, 11, e0168180.	2.5	6
29	Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. NeuroImage, 2016, 141, 120-132.	4.2	123
30	Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm. Neurolmage, 2016, 135, 287-299.	4.2	21
31	Diffuse optical tomography using multi-directional sources and detectors. Biomedical Optics Express, 2016, 7, 2623.	2.9	11
32	Estimating repetitive spatiotemporal patterns from resting-state brain activity data. Neurolmage, 2016, 133, 251-265.	4.2	13
33	Segmental Bayesian estimation of gap-junctional and inhibitory conductance of inferior olive neurons from spike trains with complicated dynamics. Frontiers in Computational Neuroscience, 2015, 9, 56.	2.1	2
34	MEG source reconstruction based on identification of directed source interactions on whole-brain anatomical networks. NeuroImage, 2015, 105, 408-427.	4.2	52
35	Extended hierarchical Bayesian diffuse optical tomography for removing scalp artifact. Biomedical Optics Express, 2013, 4, 2411.	2.9	20
36	Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography. Optics Express, 2012, 20, 20427.	3.4	42

Οκιτο Υαμαρμιτα

#	Article	IF	CITATIONS
37	Regulation of Motor Representation by Phase–Amplitude Coupling in the Sensorimotor Cortex. Journal of Neuroscience, 2012, 32, 15467-15475.	3.6	133
38	A State-Space Modeling Approach for Localization of Focal Current Sources From MEG. IEEE Transactions on Biomedical Engineering, 2012, 59, 1561-1571.	4.2	26
39	A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts. NeuroImage, 2009, 45, 393-409.	4.2	11
40	Visual image reconstruction from human brain activity: A modular decoding approach. Journal of Physics: Conference Series, 2009, 197, 012021.	0.4	5
41	Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals. NeuroImage, 2008, 42, 1397-1413.	4.2	73
42	Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders. Neuron, 2008, 60, 915-929.	8.1	433
43	Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage, 2008, 42, 1414-1429.	4.2	314
44	Mechanistic analysis of motor cortex stimulation for phantom limb pain . Pain Research, 2008, 23, 27-34.	0.1	1
45	Modelling non-stationary variance in EEG time series by state space GARCH model. Computers in Biology and Medicine, 2006, 36, 1327-1335.	7.0	42
46	Whitening as a Tool for Estimating Mutual Information in Spatiotemporal Data Sets. Journal of Statistical Physics, 2006, 124, 1275-1315.	1.2	18
47	Evaluating frequency-wise directed connectivity of BOLD signals applying relative power contribution with the linear multivariate time-series models. NeuroImage, 2005, 25, 478-490.	4.2	28
48	Recursive penalized least squares solution for dynamical inverse problems of EEG generation. Human Brain Mapping, 2004, 21, 221-235.	3.6	68
49	GARCH modelling of covariance in dynamical estimation of inverse solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 333, 261-268.	2.1	23
50	A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage, 2004, 23, 435-453.	4.2	139