Diego F Calvisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5285916/publications.pdf Version: 2024-02-01

DIECO E CALVISI

#	Article	IF	CITATIONS
1	Role of Lipogenesis Rewiring in Hepatocellular Carcinoma. Seminars in Liver Disease, 2022, 42, 077-086.	1.8	9
2	TAZ is indispensable for c-MYC-induced hepatocarcinogenesis. Journal of Hepatology, 2022, 76, 123-134.	1.8	28
3	RASSF1A independence and early galectinâ€1 upregulation in PIK3CAâ€induced hepatocarcinogenesis: new therapeutic venues. Molecular Oncology, 2022, 16, 1091-1118.	2.1	8
4	Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology, 2022, 76, 951-966.	3.6	25
5	S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells, 2022, 11, 409.	1.8	18
6	Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology, 2022, 76, 1617-1633.	3.6	15
7	\hat{I}^2 -Catenin signaling in hepatocellular carcinoma. Journal of Clinical Investigation, 2022, 132, .	3.9	80
8	CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype. Journal of Experimental and Clinical Cancer Research, 2022, 41, 65.	3.5	7
9	Targeting NAE1-mediated protein hyper-NEDDylation halts cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in experimental models. Journal of Hepatology, 2022, 77, 177-190.	1.8	11
10	β-Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Gastroenterology, 2022, 163, 481-494.	0.6	13
11	Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut, 2021, 70, 1746-1757.	6.1	60
12	Role of the Mammalian Target of Rapamycin Pathway in Liver Cancer: From Molecular Genetics to Targeted Therapies. Hepatology, 2021, 73, 49-61.	3.6	79
13	Nuclear ErbB2 expression in hepatocytes in liver disease. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 309-318.	1.4	5
14	Distinct and Overlapping Roles of Hippo Effectors YAP and TAZ During Human and Mouse Hepatocarcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1095-1117.	2.3	21
15	Molecular Mechanisms of Hepatoblastoma. Seminars in Liver Disease, 2021, 41, 028-041.	1.8	19
16	Autopsy findings after long-term treatment of COVID-19 patients with microbiological correlation. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 97-108.	1.4	44
17	Organoids for the Study of Liver Cancer. Seminars in Liver Disease, 2021, 41, 019-027.	1.8	8
18	Distinct functions of transforming growth factor- \hat{I}^2 signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death and Disease, 2021, 12, 200.	2.7	16

#	Article	IF	CITATIONS
19	Identification and In-Depth Analysis of the Novel FGFR2-NDC80 Fusion in a Cholangiocarcinoma Patient: Implication for Therapy. Current Oncology, 2021, 28, 1161-1169.	0.9	7
20	Current challenges to underpinning the genetic basis for cholangiocarcinoma. Expert Review of Gastroenterology and Hepatology, 2021, 15, 511-526.	1.4	3
21	Loss of Apc Cooperates with Activated Oncogenes to Induce Liver Tumor Formation in Mice. American Journal of Pathology, 2021, 191, 930-946.	1.9	4
22	Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Communications Biology, 2021, 4, 763.	2.0	6
23	Overexpression of Mothers Against Decapentaplegic Homolog 7 Activates the Yesâ€Associated Protein/NOTCH Cascade and Promotes Liver Carcinogenesis in Mice and Humans. Hepatology, 2021, 74, 248-263.	3.6	22
24	TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants during hepatocarcinogenesis. Journal of Hepatology, 2021, 75, 120-131.	1.8	22
25	FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted. Journal of Hepatology, 2021, 75, 363-376.	1.8	29
26	Histone H3K27 demethylase KDM6A is an epigenetic gatekeeper of mTORC1 signalling in cancer. Gut, 2021, , gutjnl-2021-325405.	6.1	15
27	Hepatocellular carcinoma (HCC): the most promising therapeutic targets in the preclinical arena based on tumor biology characteristics. Expert Opinion on Therapeutic Targets, 2021, 25, 645-658.	1.5	5
28	YAP Accelerates Notch-Driven Cholangiocarcinogenesis via mTORC1 in Mice. American Journal of Pathology, 2021, 191, 1651-1667.	1.9	12
29	<i>STRN-ALK</i> Fusion in a Case of Malignant Peritoneal Mesothelioma: Mixed Response to Crizotinib, Mode of Resistance, and Brigatinib Sequential Therapy. JCO Precision Oncology, 2021, 5, 1507-1513.	1.5	5
30	Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. Journal of Hepatology, 2021, 75, 888-899.	1.8	45
31	Cabozantinib for HCC Treatment, From Clinical Back to Experimental Models. Frontiers in Oncology, 2021, 11, 756672.	1.3	12
32	Alpelisib combination treatment as novel targeted therapy against hepatocellular carcinoma. Cell Death and Disease, 2021, 12, 920.	2.7	13
33	Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut, 2020, 69, 177-186.	6.1	121
34	Harnessing big â€~omics' data and AI for drug discovery in hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 238-251.	8.2	90
35	The Warburg Effect 97 Years after Its Discovery. Cancers, 2020, 12, 2819.	1.7	153
36	Pivotal Role of Fatty Acid Synthase in c-MYC Driven Hepatocarcinogenesis. International Journal of Molecular Sciences, 2020, 21, 8467.	1.8	20

#	Article	IF	CITATIONS
37	Schistosoma mansoni and Hepatocellular Carcinoma: Is It All About câ€Jun and Signal Transducer and Activator of Transcription 3?. Hepatology, 2020, 72, 375-378.	3.6	3
38	Hepatoblastoma: current knowledge and promises from preclinical studies. Translational Gastroenterology and Hepatology, 2020, 5, 42-42.	1.5	16
39	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	8.2	1,155
40	Mitochondrial toxicity and body shape changes during nucleos(t)ide analogues administration in patients with chronic hepatitis B. Scientific Reports, 2020, 10, 2014.	1.6	3
41	mTORC2 Signaling Is Necessary for Timely Liver Regeneration after Partial Hepatectomy. American Journal of Pathology, 2020, 190, 817-829.	1.9	13
42	CDK9 is dispensable for YAPâ€driven hepatoblastoma development. Pediatric Blood and Cancer, 2020, 67, e28221.	0.8	3
43	Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis. Cell Death and Differentiation, 2020, 27, 2330-2343.	5.0	39
44	Oncogene-dependent function of BRG1 in hepatocarcinogenesis. Cell Death and Disease, 2020, 11, 91.	2.7	23
45	Mammalian Target of Rapamycin Complex 2 Signaling Is Required for Liver Regeneration in a Cholestatic Liver Injury Murine Model. American Journal of Pathology, 2020, 190, 1414-1426.	1.9	7
46	The Hippo Effector Transcriptional Coactivator with PDZ-Binding Motif Cooperates with Oncogenic β-Catenin to Induce Hepatoblastoma Development in Mice and Humans. American Journal of Pathology, 2020, 190, 1397-1413.	1.9	13
47	Combined CDK4/6 and Pan-mTOR Inhibition Is Synergistic Against Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2019, 25, 403-413.	3.2	56
48	Combined Treatment with MEK and mTOR Inhibitors is Effective in In Vitro and In Vivo Models of Hepatocellular Carcinoma. Cancers, 2019, 11, 930.	1.7	8
49	Experimental Models to Define the Genetic Predisposition to Liver Cancer. Cancers, 2019, 11, 1450.	1.7	15
50	Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. Journal of Hepatology, 2019, 71, 742-752.	1.8	44
51	Cholangiocarcinoma: Stateâ€ofâ€theâ€art knowledge and challenges. Liver International, 2019, 39, 5-6.	1.9	6
52	The mTORC2â€Akt1 Cascade Is Crucial for câ€Myc to Promote Hepatocarcinogenesis in Mice and Humans. Hepatology, 2019, 70, 1600-1613.	3.6	70
53	Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver International, 2019, 39, 79-97.	1.9	25
54	Functional role of SGK3 in PI3K/Pten driven liver tumor development. BMC Cancer, 2019, 19, 343.	1.1	17

#	Article	IF	CITATIONS
55	Reply. Hepatology, 2019, 70, 764-765.	3.6	1
56	MEK inhibition suppresses K-Ras wild-type cholangiocarcinoma in vitro and in vivo via inhibiting cell proliferation and modulating tumor microenvironment. Cell Death and Disease, 2019, 10, 120.	2.7	10
57	TEA Domain Transcription Factor 4 Is the Major Mediator of Yes-Associated Protein Oncogenic Activity in Mouse and Human Hepatoblastoma. American Journal of Pathology, 2019, 189, 1077-1090.	1.9	25
58	Genetic Mouse Models as In Vivo Tools for Cholangiocarcinoma Research. Cancers, 2019, 11, 1868.	1.7	5
59	Pathogenetic, Prognostic, and Therapeutic Role of Fatty Acid Synthase in Human Hepatocellular Carcinoma. Frontiers in Oncology, 2019, 9, 1412.	1.3	44
60	MicroRNA-203 impacts on the growth, aggressiveness and prognosis of hepatocellular carcinoma by targeting <i>MAT2A</i> and <i>MAT2B</i> genes. Oncotarget, 2019, 10, 2835-2854.	0.8	18
61	Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans. American Journal of Pathology, 2018, 188, 995-1006.	1.9	29
62	Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model. Cell Death and Disease, 2018, 9, 31.	2.7	23
63	Loss of Pten synergizes with c-Met to promote hepatocellular carcinoma development via mTORC2 pathway. Experimental and Molecular Medicine, 2018, 50, e417-e417.	3.2	39
64	Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice. Oncogene, 2018, 37, 3229-3242.	2.6	79
65	Animal models of biliary injury and altered bile acid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1254-1261.	1.8	105
66	Deregulation of methionine metabolism as determinant of progression and prognosis of hepatocellular carcinoma. Translational Gastroenterology and Hepatology, 2018, 3, 36-36.	1.5	23
67	Alterations of methionine metabolism in hepatocarcinogenesis: the emergent role of glycine N-methyltransferase in liver injury. Annals of Gastroenterology, 2018, 31, 552-560.	0.4	15
68	Focal adhesion kinase activation limits efficacy of Dasatinib in câ€Myc driven hepatocellular carcinoma. Cancer Medicine, 2018, 7, 6170-6181.	1.3	11
69	The complex role of bone morphogenetic protein 9 in liver damage and regeneration: New evidence from in vivo and in vitro studies. Liver International, 2018, 38, 1547-1549.	1.9	2
70	Oncogene-dependent addiction to carbohydrate-responsive element binding protein in hepatocellular carcinoma. Cell Cycle, 2018, 17, 1496-1512.	1.3	14
71	Both <i>de novo</i> synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver International, 2017, 37, 80-89.	1.9	60
72	Nonstructural protein 5B promotes degradation of the NORE1A tumor suppressor to facilitate hepatitis C virus replication. Hepatology, 2017, 65, 1462-1477.	3.6	5

#	Article	IF	CITATIONS
73	Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle, 2017, 16, 499-507.	1.3	45
74	Glucose Catabolism in Liver Tumors Induced by c-MYC Can Be Sustained by Various PKM1/PKM2 Ratios and Pyruvate Kinase Activities. Cancer Research, 2017, 77, 4355-4364.	0.4	74
75	A functional mammalian target of rapamycin complex 1 signaling is indispensable for câ€Mycâ€driven hepatocarcinogenesis. Hepatology, 2017, 66, 167-181.	3.6	119
76	Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. Journal of Hepatology, 2017, 67, 1194-1203.	1.8	77
77	Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLoS ONE, 2017, 12, e0184068.	1.1	35
78	Deregulated c-Myc requires a functional HSF1 for experimental and human hepatocarcinogenesis. Oncotarget, 2017, 8, 90638-90650.	0.8	17
79	Cholesterol overload in the liver aggravates oxidative stress-mediated DNA damage and accelerates hepatocarcinogenesis. Oncotarget, 2017, 8, 104136-104148.	0.8	33
80	Inhibition of HSF1 suppresses the growth of hepatocarcinoma cell lines <i>in vitro</i> and AKT-driven hepatocarcinogenesis in mice. Oncotarget, 2017, 8, 54149-54159.	0.8	24
81	Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget, 2017, 8, 73433-73447.	0.8	26
82	Sulfatase 1: a new Jekyll and Hyde in hepatocellular carcinoma?. Translational Gastroenterology and Hepatology, 2016, 1, 43-43.	1.5	3
83	NORE1A Regulates MDM2 Via β-TrCP. Cancers, 2016, 8, 39.	1.7	9
84	Activated mutant forms of <scp>PIK</scp> 3 <scp>CA</scp> cooperate with RasV12 or câ€Met to induce liver tumour formation in mice via <scp>AKT</scp> 2/ <scp>mTORC</scp> 1 cascade. Liver International, 2016, 36, 1176-1186.	1.9	26
85	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	8.2	964
86	Programmed death ligand 1 expression in hepatocellular carcinoma: A prognostic marker and therapeutic target for liver cancer?. Hepatology, 2016, 64, 1847-1849.	3.6	9
87	An infernal crossâ€talk between oncogenic βâ€catenin and câ€Met in hepatocellular carcinoma: Evidence from mouse modeling. Hepatology, 2016, 64, 1421-1423.	3.6	5
88	The dark side of the moon: AKT as a tumor suppressor in the liver?. Hepatology, 2016, 64, 1358-1361.	3.6	1
89	Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Scientific Reports, 2016, 6, 20484.	1.6	100
90	DNA-PKcs: A promising therapeutic target in human hepatocellular carcinoma?. DNA Repair, 2016, 47, 12-20.	1.3	25

#	Article	IF	CITATIONS
91	Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology, 2016, 63, 1900-1913.	3.6	82
92	[11C]acetate PET Imaging is not Always Associated with Increased Lipogenesis in Hepatocellular Carcinoma in Mice. Molecular Imaging and Biology, 2016, 18, 360-367.	1.3	11
93	Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. Journal of Hepatology, 2016, 64, 333-341.	1.8	115
94	Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget, 2016, 7, 49194-49216.	0.8	20
95	Distinct anti-oncogenic effect of various microRNAs in different mouse models of liver cancer. Oncotarget, 2015, 6, 6977-6988.	0.8	49
96	Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget, 2015, 6, 10102-10115.	0.8	61
97	Molecularly targeted therapies for human hepatocellular carcinoma: Should we start from β-catenin inhibition?. Journal of Hepatology, 2015, 62, 257-259.	1.8	5
98	Activation of β-Catenin and Yap1 in Human Hepatoblastoma and Induction of Hepatocarcinogenesis in Mice. Gastroenterology, 2014, 147, 690-701.	0.6	249
99	Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research. American Journal of Pathology, 2014, 184, 912-923.	1.9	271
100	Inhibition of hepatitis B virus-associated liver cancer by antiplatelet therapy: A revolution in hepatocellular carcinoma prevention?. Hepatology, 2013, 57, 848-850.	3.6	5
101	Hepatoma Cells From Mice Deficient in Glycine N-Methyltransferase Have Increased RAS Signaling and Activation of Liver Kinase B1. Gastroenterology, 2012, 143, 787-798.e13.	0.6	40
102	Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: Novel insights from interspecies comparison. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 215-237.	3.3	27
103	AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene) Tj ETQq1 1	0.784314 3.6	f rgBT /Overi 183
104	Cholangiocarcinomas can originate from hepatocytes in mice. Journal of Clinical Investigation, 2012, 122, 2911-2915.	3.9	385
105	Bmi1 Is Required for Hepatic Progenitor Cell Expansion and Liver Tumor Development. PLoS ONE, 2012, 7, e46472.	1.1	31
106	Increased Lipogenesis, Induced by AKT-mTORC1-RPS6 Signaling, Promotes Development of Human Hepatocellular Carcinoma. Gastroenterology, 2011, 140, 1071-1083.e5.	0.6	453
107	Activation of v-Myb avian myeloblastosis viral oncogene homolog-like2 (MYBL2)-LIN9 complex contributes to human hepatocarcinogenesis and identifies a subset of hepatocellular carcinoma with mutant p53. Hepatology, 2011, 53, 1226-1236.	3.6	53
108	Hepatocarcinogenesis following pancreatic islet transplantation in streptozotocin- and autoimmune-diabetic rats. Archives of Physiology and Biochemistry, 2009, 115, 97-104.	1.0	1

#	Article	IF	CITATIONS
109	A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nature Medicine, 2006, 12, 410-416.	15.2	889