Carla Roque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5285797/publications.pdf

Version: 2024-02-01

126907 114465 4,644 65 33 63 h-index citations g-index papers 65 65 65 1527 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering, 2013, 44, 657-674.	12.0	426
2	Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite Structures, 2005, 69, 449-457.	5.8	370
3	Natural frequencies of functionally graded plates by a meshless method. Composite Structures, 2006, 75, 593-600.	5.8	305
4	A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Composites Part B: Engineering, 2012, 43, 711-725.	12.0	301
5	Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Composites Part B: Engineering, 2003, 34, 627-636.	12.0	241
6	A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Composite Structures, 2012, 94, 1814-1825.	5.8	230
7	Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. International Journal of Engineering Science, 2011, 49, 976-984.	5.0	153
8	Analysis of composite plates by trigonometric shear deformation theory and multiquadrics. Computers and Structures, 2005, 83, 2225-2237.	4.4	152
9	Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Composites Part B: Engineering, 2011, 42, 1276-1284.	12.0	143
10	Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. European Journal of Mechanics, A/Solids, 2013, 37, 24-34.	3.7	142
11	A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Composite Structures, 2013, 96, 532-537.	5.8	142
12	Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Composite Structures, 2004, 66, 287-293.	5.8	138
13	Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions. Computer Methods in Applied Mechanics and Engineering, 2005, 194, 4265-4278.	6.6	138
14	A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory. Journal of Sound and Vibration, 2007, 300, 1048-1070.	3.9	106
15	Radial basis functions–finite differences collocation and a Unified Formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami's zig-zag theory. Composite Structures, 2011, 93, 1613-1620.	5. 8	104
16	Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions. Mechanics Research Communications, 2011, 38, 368-371.	1.8	94
17	Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations. Engineering Analysis With Boundary Elements, 2005, 29, 1104-1114.	3.7	93
18	Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Computational Mechanics, 2011, 48, 13-25.	4.0	92

#	Article	IF	CITATIONS
19	Analysis of Functionally Graded Plates by a Robust Meshless Method. Mechanics of Advanced Materials and Structures, 2007, 14, 577-587.	2.6	85
20	Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Applied Mathematical Modelling, 2013, 37, 4626-4633.	4.2	83
21	Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. Composites Part B: Engineering, 2005, 36, 559-572.	12.0	77
22	Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory. Thin-Walled Structures, 2011, 49, 804-811.	5.3	72
23	Static and free vibration analysis of composite shells by radial basis functions. Engineering Analysis With Boundary Elements, 2006, 30, 719-733.	3.7	68
24	Buckling and vibration analysis of isotropic and laminated plates by radial basis functions. Composites Part B: Engineering, 2011, 42, 592-606.	12.0	63
25	Natural frequencies of FSDT cross-ply composite shells by multiquadrics. Composite Structures, 2007, 77, 296-305.	5.8	59
26	Analysis of thick isotropic and cross-ply laminated plates by radial basis functions and a Unified Formulation. Journal of Sound and Vibration, 2011, 330, 771-787.	3.9	58
27	A local radial basis functions—Finite differences technique for the analysis of composite plates. Engineering Analysis With Boundary Elements, 2011, 35, 363-374.	3.7	52
28	Differential evolution for optimization of functionally graded beams. Composite Structures, 2015, 133, 1191-1197.	5.8	52
29	Modelling cross-ply laminated elastic shells by a higher-order theory and multiquadrics. Computers and Structures, 2006, 84, 1288-1299.	4.4	41
30	Free Vibration Analysis of Composite and Sandwich Plates by a Trigonometric Layerwise Deformation Theory and Radial Basis Functions. Journal of Sandwich Structures and Materials, 2006, 8, 497-515.	3.5	41
31	Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to a variation of Murakami's zig-zag theory. European Journal of Mechanics, A/Solids, 2011, 30, 559-570.	3.7	41
32	Analysis of plates on Pasternak foundations by radial basis functions. Computational Mechanics, 2010, 46, 791-803.	4.0	39
33	Buckling analysis of laminated plates by wavelets. Computers and Structures, 2011, 89, 626-630.	4.4	36
34	Radial basis functions collocation for the bending and free vibration analysis of laminated plates using the Reissner-Mixed Variational Theorem. European Journal of Mechanics, A/Solids, 2013, 39, 104-112.	3.7	33
35	Two higher order Zig-Zag theories for the accurate analysis of bending, vibration and buckling response of laminated plates by radial basis functions collocation and a unified formulation. Journal of Composite Materials, 2011, 45, 2523-2536.	2.4	31
36	Dynamic Analysis of Functionally Graded Plates and Shells by Radial Basis Functions. Mechanics of Advanced Materials and Structures, 2010, 17, 636-652.	2.6	30

#	Article	IF	Citations
37	Radial basis functions-differential quadrature collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami's Zig-Zag theory. Computers and Structures, 2012, 90-91, 107-115.	4.4	30
38	Differential evolution for free vibration optimization of functionally graded nano beams. Composite Structures, 2016, 156, 29-34.	5.8	29
39	Maximization of fundamental frequency of layered composites using differential evolution optimization. Composite Structures, 2018, 183, 77-83.	5.8	28
40	New developments in the radial basis functions analysis of composite shells. Composite Structures, 2009, 87, 141-150.	5.8	19
41	Numerical experiments on optimal shape parameters for radial basis functions. Numerical Methods for Partial Differential Equations, 2010, 26, 675-689.	3.6	17
42	Differential evolution optimization for the analysis of composite plates with radial basis collocation meshless method. Composite Structures, 2015, 124, 317-326.	5.8	17
43	Bending and Vibration of Laminated Plates by a Layerwise Formulation and Collocation with Radial Basis Functions. Mechanics of Advanced Materials and Structures, 2013, 20, 624-637.	2.6	16
44	Transient analysis of composite and sandwich plates by radial basis functions. Journal of Sandwich Structures and Materials, 2011, 13, 681-704.	3.5	15
45	Static Deformations and Vibration Analysis of Composite and Sandwich Plates Using a Layerwise Theory and a Local Radial Basis Functions-Finite Differences Discretization. Mechanics of Advanced Materials and Structures, 2013, 20, 666-678.	2.6	15
46	Solving time-dependent engineering problems with multiquadrics. Journal of Sound and Vibration, 2005, 280, 595-610.	3.9	14
47	Analysis of sandwich plates by radial basis functions collocation, according to Murakami's Zig-Zag theory. Journal of Sandwich Structures and Materials, 2012, 14, 505-524.	3.5	14
48	An Improved Meshless Method for the Static and Vibration Analysis of Plates. Mechanics Based Design of Structures and Machines, 2013, 41, 21-39.	4.7	14
49	Analysis of functionally graded piezoelectric Timoshenko smart beams using a multiquadric radial basis function method. Composite Structures, 2017, 176, 640-653.	5.8	13
50	Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method. Journal of Intelligent Material Systems and Structures, 2018, 29, 2728-2743.	2.5	13
51	Analysis of thick plates by local radial basis functions-finite differences method. Meccanica, 2012, 47, 1157-1171.	2.0	11
52	Analysis of Thin Isotropic Rectangular and Circular Plates with Multiquadrics. Strength of Materials, 2005, 37, 163-173.	0.5	8
53	Buckling behaviour of cross-ply laminated plates by a higher-order shear deformation theory. Science and Engineering of Composite Materials, 2012, 19, 119-125.	1.4	8
54	Multiobjective optimization for node adaptation in the analysis of composite plates using a meshless collocation method. Engineering Analysis With Boundary Elements, 2015, 50, 109-116.	3.7	7

#	Article	IF	CITATIONS
55	An Optimized Shape Parameter Radial Basis Function Formulation for Composite and Sandwich Plates using Higher Order Formulations. Journal of Sandwich Structures and Materials, 2010, 12, 279-306.	3.5	4
56	Analysis of thick plates by radial basis functions. Acta Mechanica, 2011, 217, 177-190.	2.1	4
57	Transient analysis of composite plates by a local radial basis functions-finite difference techique. Acta Mechanica Solida Sinica, 2012, 25, 22-36.	1.9	4
58	Node adaptation for global collocation with radial basis functions using direct multisearch for multiobjective optimization. Engineering Analysis With Boundary Elements, 2014, 39, 5-14.	3.7	4
59	Modelling of Composite and Sandwich Plates by a Trigonometric Layerwise Theory and Multiquadrics. , 2005, , 231-240.		2
60	Transient analysis of composite plates by radial basis functions in a pseudospectral framework. Computers and Structures, 2011, 89, 161-169.	4.4	2
61	RBF-FD meshless optimization using direct search (GLODS) in the analysis of composite plates. Engineering Analysis With Boundary Elements, 2018, 92, 114-123.	3.7	2
62	Solving time-dependent problems by an RBF-PS method with an optimal shape parameter. Journal of Physics: Conference Series, 2009, 181, 012053.	0.4	1
63	Analysis of Laminated Plates by Trigonometric Theory, Radial Basis, and Unified Formulation. AIAA Journal, 2011, 49, 1559-1562.	2.6	1
64	Symbolic and numerical analysis of plates in bending using Matlab. Journal of Symbolic Computation, 2014, 61-62, 3-11.	0.8	1
65	Analysis of isotropic and laminated plates by an affine space decomposition for asymmetric radial basis functions collocation. Engineering Analysis With Boundary Elements, 2012, 36, 709-715.	3.7	O